Flynn, Nick2017-06-152017-06-152017-052017-06-08May 2017http://hdl.handle.net/11310/116The phosphoenolpyruvate: sugar phosphotransferase system (PTS) was first discovered in the 1960s by Kundig et al. The PTS is unique to bacteria, and is a rich area of study offering an abundance of potential research topics due to its environmental role and its potential as a target for future antibiotics. This study focuses on the nag operon, which plays an important role in chitin degradation. The expression of nagE, one gene located on the nag operon, was assessed via quantitative PCR (qPCR) in the presence of four substrates. This gene encodes the N-acetylglucosamine transporter protein. Expression of the gene was found to be up-regulated in the presence of N-acetylglucosamine, but not in the presence of glucose, mannose, or lactate. Potential future projects include: the quantification of expression of nagA via qPCR; the use of a reporter gene to quantify expression of nagE and nagA; study of NagC, thought to be the repressor of the nag operon; and further study and characterization of the gene encoding for the glucose specific transporter protein in V. furnissii.application/pdfen-USchitinphosphotransferase systemVibrio furnissiiN-acetylglucosamineChitin Metabolism by Vibrio furnissii: Quantification of nagE ExpressionThesis2017-06-15