Engineering of a Microfluidic Platform for Investigation of Immersion Freezing in the Atmosphere

dc.contributor.authorBithi, Swastika
dc.contributor.authorDas, Pronab
dc.contributor.authorAria, Saman
dc.contributor.authorDevadoss, Timothy
dc.contributor.authorBhattacharia, Sanjoy
dc.contributor.authorHiranuma, Naruki
dc.date.accessioned2024-03-11T20:05:01Z
dc.date.available2024-03-11T20:05:01Z
dc.date.issued2024-03-07
dc.descriptionThe West Texas A&M University Microfluidic Static Droplet Array (WT-MFSDA) platform was developed for studying atmospheric ice nucleation, specifically immersion freezing. It combines a microfluidic device with interconnected droplet parking traps and a unique hand pipetting method to create an array of nanoliter-sized droplets containing ice-nucleating particles (INPs). A commercialized cooling unit facilitates the visualization and characterization of freezing events in individual droplets. Each droplet is carefully isolated and covered with a thin mineral oil film, enhancing measurement reliability by eliminating artifacts due to surface contact, mass transfer, and evaporation. The WT-MFSDA platform allows simulation and investigation of immersion freezing in water and INP-involved suspensions at temperatures below -35 °C, with cooling rates relevant to atmospheric cloud updraft velocities. Temperature uncertainty is controlled within ± 0.3 °C. Platform performance is verified using well-known bulk powder INP surrogates, such as illite NX, Snomax, and microcrystalline cellulose. The results from nanoliter freezing assays in WT-MFSDA are compared and validated against other freezing assays and published data. A calorimetry analysis of single droplet freezing is conducted to understand thermodynamics, kinetics, and exothermic energy release during the liquid-to-solid phase transition. Future plans include testing freezing properties of high-latitude soil dust samples from the North Slope of Alaska region using WT-MFSDA and integrating research and teaching activities by training students, and expanding laboratory exercises to classrooms. The advanced ice nucleation capabilities of WT-MFSDA enable enhanced science teaching in atmospheric ice nucleation research.en_US
dc.description.abstractThe West Texas A&M University Microfluidic Static Droplet Array (WT-MFSDA) platform was developed for studying atmospheric ice nucleation, specifically immersion freezing. It combines a microfluidic device with interconnected droplet parking traps and a unique hand pipetting method to create an array of nanoliter-sized droplets containing ice-nucleating particles (INPs). A commercialized cooling unit facilitates the visualization and characterization of freezing events in individual droplets. Each droplet is carefully isolated and covered with a thin mineral oil film, enhancing measurement reliability by eliminating artifacts due to surface contact, mass transfer, and evaporation. The WT-MFSDA platform allows simulation and investigation of immersion freezing in water and INP-involved suspensions at temperatures below -35 °C, with cooling rates relevant to atmospheric cloud updraft velocities. Temperature uncertainty is controlled within ± 0.3 °C. Platform performance is verified using well-known bulk powder INP surrogates, such as illite NX, Snomax, and microcrystalline cellulose. The results from nanoliter freezing assays in WT-MFSDA are compared and validated against other freezing assays and published data. A calorimetry analysis of single droplet freezing is conducted to understand thermodynamics, kinetics, and exothermic energy release during the liquid-to-solid phase transition. Future plans include testing freezing properties of high-latitude soil dust samples from the North Slope of Alaska region using WT-MFSDA and integrating research and teaching activities by training students, and expanding laboratory exercises to classrooms. The advanced ice nucleation capabilities of WT-MFSDA enable enhanced science teaching in atmospheric ice nucleation research.
dc.identifier.urihttps://hdl.handle.net/11310/6162
dc.language.isoen_US
dc.subject2024 Faculty and Student Research Poster Session and Research Fairen_US
dc.subjectWest Texas A&M Universityen_US
dc.subjectCollege of Engineeringen_US
dc.subjectPosteren_US
dc.subjectIce-nucleating particlesen_US
dc.subjectWest Texas A&M University Microfluidic Static Droplet Arrayen_US
dc.titleEngineering of a Microfluidic Platform for Investigation of Immersion Freezing in the Atmosphere
dc.typePresentation

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Bithi_Swastika 1.pdf
Size:
2.5 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.7 KB
Format:
Item-specific license agreed upon to submission
Description: