

Group table and Sudoku puzzles Phillip Fowler, Elliott McPherson, Qingquan Wu, and Yong Yang College of Engineering, West Texas A&M University Canyon, Texas 79016 Email: qwu@wtamu.edu

Sudoku Introduction

What if we allow row/column switching?

Why not check all of them?

Every $n \times n$ Sudoku has three rules:

- Every row must contain exactly the numbers from 1 to n, without repetitions;
- Every column must contain exactly the numbers from 1 to n, without repetitions;
- If $n = k^2$ is a perfect square, then every (nonoverlapping) $k \times k$ subgrid must contain exactly the numbers from 1 to n, without repetitions.

Then it is possible to satisfy all three Sudoku rules. Here is an example of a group table with row/column switching. As a matter of fact, we only switched R2 with R4, R3 with R7, R6 with R8

1	2	3	4	5	6	7	8	9
4	5	6	7	8	9	1	2	3
7	8	9	1	2	3	4	5	6
2	3	1	5	6	4	8	9	7

There are about 6.7 trillion billion (10^{21}) Sudokus. It would take the super-computer $\sim2.1 imes10^{10}$ seconds, or 680 years.

 $- \rightarrow$

Group table

Every group (multiplication) table will automatically satisfy the first two rules. But it will not satisfy the third rule. Here is an example of a 4×4 group table.

а	b	С	d
b	а	d	С
С	d	а	b
d	С	b	а

If we change the symbols for this group from $\{a, b, c, d\}$ to $\{1, 2, 3, 4\}$, then it looks like a Sudoku

1	2	3	4
2	1	4	(\mathbf{r})
3	4	1	2
4	3	2	1

Here is an example of a 9×9 group table.

5	6	4	8	9	7	2	3	1
8	9	7	2	3	1	5	6	4
3	1	2	6	4	5	9	7	8
6	4	5	9	7	8	3	1	2
9	7	8	3	1	2	6	4	5

% of Sudokus are induced by group?

Conclusion: Some Sudokus are induced this way, but extremely rare.

Approximately one out of 21 billion Sudokus is induced by group. Let us use a metaphor to explain this chance.

How does the algorithm work?

1	2	3	6	7	8	9	4	5
5	8	4	2	3	9	7	6	1
9	6	7	1	4	5	3	2	8
3	7	2	4	6	1	5	8	9
6	9	1	5	8	3	2	7	4
4	5	8	7	9	2	6	1	3
8	3	6	9	2	4	1	5	7
2	1	9	8	5	7	4	3	6
7	4	5	3	1	6	8	9	2

1	2	3	4	7	8	9	6	5
5	8	4	6	3	9	7	2	1
9	6	7	2	4	5	3	1	8
3	7	2	8	6	1	5	4	9
6	9	1	7	8	3	2	5	4
4	5	8	1	9	2	6	7	3
8	3	6	5	2	4	1	9	7
2	1	9	3	5	7	4	8	6
7	4	5	9	1	6	8	3	2

1	2	3	4	5	6	7	8	9
5	8	4	6	1	2	3	9	7
9	6	7	2	8	1	4	5	3
3	7	2	8	9	4	6	1	5
6	9	1	7	4	5	8	3	2
4	5	8	1	3	7	Q	2	6

1	2	3	4	5	6	7	8	9
2	1	9	3	6	8	5	7	4
3	7	2	8	9	4	6	1	5
4	5	8	1	3	7	9	2	6
5	8	4	6	1	2	3	9	7
6	9	1	7	4	5	8	3	2

1	2	3	4	5	6	7	8	9	
2	3	4	5	6	7	8	9	1	
3	4	5	6	7	8	9	1	2	
4	5	6	7	8	9	1	2	3	
5	6	7	8	9	1	2	3	4	
6	7	8	9	1	2	3	4	5	
7	8	9	1	2	3	4	5	6	
8	9	1	2	3	4	5	6	7	
9	1	2	3	4	5	6	7	8	

Here is another example of a 9×9 group table.

1	2	3	4	5	6	7	8	9
2	3	1	5	6	4	8	9	7
3	1	2	6	4	5	9	7	8
4	5	6	7	8	9	1	2	3
5	6	4	8	9	7	2	3	1
6	4	5	9	7	8	3	1	2
7	8	9	1	2	3	4	5	6
8	9	7	2	3	1	5	6	4
9	7	8	3	1	2	6	4	5

Algorithmic approach

Extreme rare \implies infeasible to check by human.

With the help of High Performance Computing in WTAMU, we were able to find 29 group-induced ones out of \sim 622 billion Sudokus in 48 hours.

8	3	6	5	7	9	2	4	1
2	1	9	3	6	8	5	7	4
7	4	5	9	2	3	1	6	8

7	4	5	9	2	3	1	6	8
8	3	6	5	7	9	2	4	1
9	6	7	2	8	1	4	5	3

Then we check associativity for this "supposed-to-be" group table.

->

References

- K. H. Boden and M. B. Ward (2019) A new class of Cayley-Sudoku Tables, *Mathematics Magazine*, 92:4, 243–251.
- J. Carmichael, K. Schloeman, and M. B. Ward (2010) Cosets and Cayley-Sudoku tables. *Mathemat*ics Magazine 83:2, 130–139.
- J. Dénes and A. D. Keedwell (1974) Latin Squares and Their Applications. New York: Academic Press.
- T. W. Hungerford (1980) Algebra. Springer-Verlag. New York, Berlin, Heidelberg. Graduate Texts in

Mathematics 73.

Online platform. https://math.stackexchange.com/que a-sudoku-a-cayley-table-for-a-group.

For questions/suggestions: qwu@wtamu.edu