Group table and Sudoku puzzles

Phillip Fowler, Elliott McPherson, Qingquan Wu, and Yong Yang

College of Engineering, West Texas A\&M University
 Canyon, Texas 79016
 Email: qwu@wtamu.edu

Sudoku Introduction

Every $n \times n$ Sudoku has three rules:
(1) Every row must contain exactly the numbers from 1 to n, without repetitions;
(2) Every column must contain exactly the numbers from 1 to n, without repetitions;
(3) If $n=k^{2}$ is a perfect square, then every (nonoverlapping) $k \times k$ subgrid must contain exactly the numbers from 1 to n, without repetitions.

Group table

Every group (multiplication) table will automatically satisfy the first two rules. But it will not satisfy the third rule. Here is an example of a 4×4 group table.

$$
\begin{array}{|l|l|l|l|}
\hline a & b & c & d \\
\hline b & a & d & c \\
\hline c & d & a & b \\
\hline d & c & b & a \\
\hline
\end{array}
$$

If we change the symbols for this group from $\{a, b, c, d\}$ to $\{1,2,3,4\}$, then it looks like a Sudoku

>	1	2	3	4
2	1	4	3	
3	4	1	2	
4	3	2	1	

Here is an example of a 9×9 group table.
123456789
234567891
345678912
456789123
567891234
678912345
789123456
891234567
912345678

Here is another example of a 9×9 group table.
123456789
231564897
312645978
456789123
564897231
645978312
789123456
897231564
978312645

What if we allow row/column switching?

Then it is possible to satisfy all three Sudoku rules. Here is an example of a group table with row/column switching. As a matter of fact, we only switched R2 with R4, R3 with R7, R6 with R8

123456|789 456789123 789123456 231564897
564897231 897231564 312645978 645978312 978312645

\% of Sudokus are induced by group?

Conclusion: Some Sudokus are induced this way, but extremely rare.
Approximately one out of 21 billion Sudokus is induced by group. Let us use a metaphor to explain this chance.

Algorithmic approach

Extreme rare \Longrightarrow infeasible to check by human.

With the help of High Performance Computing in WTAMU, we were able to find 29 group-induced ones out of ~ 622 billion Sudokus in 48 hours.

Why not check all of them?

There are about 6.7 trillion billion $\left(10^{21}\right)$ Sudokus. It would take the super-computer $\sim 2.1 \times 10^{10}$ seconds, or 680 years.

How does the algorithm work?

	23	36	67	8	9	4				12	3	4	7			6	
	84	42	23	9		6				5	4	6	3	9		2	
	67	71	14	5		2				96	7	2	4	5		1	
	72	24	46	1	5	8				37	2		6			4	9
	91	15	58	3	2	7				69	1		8	3	2	5	4
	58	87	79	2	6	1				45	8		9	2	6	7	
	36	69	92	4	1	5				83	6		2	4		9	
	19	98	85	7	4	3				21	9		5			8	6
	45		31			9				74	5		1			3	2
	12	34	45	6	7	8				12	3	45	5	6		8	
	58	4	61	2	3	9				21	9	36	6	8			
	967	72	28	1	4	5				37	2	89	9	4	6	1	
	372	28	89	4	6	1				45	8	13	3	7		2	
	691	17	74	5	8	3		\rightarrow		5	4		1	2		9	
	45	81	13	7	9	2				69	1	74	4	5		3	
	836	65	57	9	2	4				74	5	92	2	3		6	
	219	93	36	8		7				83	6	57	7	9		4	
	745	5	92	3	1	6				96	7	28	8	1		5	

Then we check associativity for this "supposed-to-be" group table.

References

K. H. Boden and M. B. Ward (2019) A new class of Cayley-Sudoku Tables, Mathematics Magazine, 92:4, 243-251.
J. Carmichael, K. Schloeman, and M. B. Ward (2010) Cosets and Cayley-Sudoku tables. Mathematics Magazine 83:2, 130-139.
J. Dénes and A. D. Keedwell (1974) Latin Squares and Their Applications. New York: Academic Press.
T. W. Hungerford (1980) Algebra. Springer-Verlag New York, Berlin, Heidelberg. Graduate Texts in Mathematics 73.
Online platform. https://math.stackexchange.com/que a-sudoku-a-cayley-table-for-a-group.

