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ABSTRACT

In this work, transport on a network and the advantages of using a parallel archi-

tecture for computations for three distinct network configurations are explored. The

aim is to exploit mathematical methods coupled with modern computing techniques

to arrive at an efficient and effective solution. Results obtained on serial and parallel

architectures are presented and compared on the configurations. The three dimen-

sional transport problem is modeled as a two dimensional network problem to reduce

dimensionality, a common practice when dealing with complicated systems. This

system is represented on a given domain as a graph. The domain decomposition

method is implemented for the linear acoustic problem on three network configura-

tions. The convergence of this method is examined in order to determine an a priori

estimate for the total number of iterations to convergence. The numerical solution

of the multidimensional problem is justified by algebraic conditions that model the

multi-dimensional effects at the network junctions. The results demonstrate an ap-

proximate bound on the number of iterations for a given network and provide insight

into the advantages of parallel processing on networks of a certain size.
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CHAPTER I

INTRODUCTION

Computational power, which has increased significantly, still has limits. Mathemati-

cal models of natural processes involve significant complexity. Computation of these

models are affected by limits on computational power and such models of these pro-

cesses cannot always incorporate all dimensions. A common practice when trying to

mitigate computational time is to employ dimensional reduction. This method pro-

vides a suitable model with a dimension dependency removed via assumptions about

the solution. In this work, transport on a class of networks is modeled. A network is a

large multidimensional system that simplifies to transport on an edge via dimensional

reduction. Systems can include such concepts as laser drilling or gas flow through

a nozzle [4]. After dimensional reduction is applied, these systems are transformed

into one-dimensional domains and are represented by edges on a network. This net-

work appears as a graph. This is now a problem that can be solved in reasonable

time and with less computational demand. In addition, application of the domain

decomposition method and computations of the simulation completed on a parallel

architecture to further decrease run time and increase output are studied. The do-
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main decomposition method is used for a linear transport type problem defined on a

specific type of network with three configurations. The premise of parallel computing

is to simultaneously use multiple processors for computation where available. Most

modern computers employ this tactic by using dual or quad core central processing

units (CPUs) [26] and use optimization software to handle load balancing among the

processors.

In Chapter 2, preliminary concepts regarding laws of conservation, an introduction

the numerical methods used in this work, and some basic concepts of parallel comput-

ing are presented. Chapter 3 details network problems and the application of to the

network problem. Chapter 4 details the convergence analysis. Numerical methods

and results are further explored in Chapter 5. A summary of the results from this

work, conclusions and avenues for future work are presented in Chapter 6
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CHAPTER II

PRELIMINARIES

Hyperbolic partial differential equations (PDEs) appear in many problems. PDEs

where wave motion or advective transport is important are the focus of the work

herein. These PDEs arise in a variety of fields such as gas dynamics, acoustics, optics,

and geophysics [11, 29, 18]. This includes systems of PDEs in a wide range of fields

that are not limited to those in a purely scientific arena. In other fields such systems

are used to explain stocks, air traffic, water flows, and feedback [22]. All of these

systems obey the laws of conservation. In this chapter, a brief introduction of the

concepts used throughout this work is given. Preliminary and fundamental concepts

for advective transport on a network and the parallel computing aspect studied in

this work are introduced. The general theory of conservation laws, advection, and

characteristics are detailed in section 2.1. Section 2.2 and numerical methods used in

this work are discussed. The basics of parallel computing are introduced in section

2.3; for specifics on the cluster structure and hardware, see Appendix A and B.
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2.1 Conservation Laws

Fundamental concepts for this work begin with the conservation laws, which are an

important class of homogeneous hyperbolic equations [18]. Quantities such as energy

and momentum are conserved, meaning that the given substance or quantity is neither

created nor destroyed. Thus models of physical laws give rise to the conservation

laws. These laws are commonly derived in an integral form that is then converted

to the differential form. Their derivation begins with physical principles that lead to

development of the conservation laws.

Consider, as in [18], some conserved quantity, q, flowing through a one-dimensional

pipe with some known velocity α, which is assumed to vary only with x, the distance

along the pipe, and time t . Then the total mass of the conserved quantity in any

given section [x1, x2] is represented by

∫ x2

x1

q(x, t)dx. (2.1)

Since the substance is conserved within any given section the total mass within [x1, x2]

can change only with respect to the flux of particles through the endpoints x1 and x2

of the section which gives

d

dt

∫ x2

x1

q(x, t)dx = f1(t)− f2(t), (2.2)
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where the flux +f1(t) and −f2(t) represent the flux into the section. Equation (2.2)

is the integral form of the conservation law.

Now consider how the flux functions are related to q. Flux is given by

f(x, t) = αq(x, t), (2.3)

where α represents a constant velocity. This transforms (2.2) into

d

dt

∫ x2

x1

q(x, t)dx = f(q(x1, t))− f(q(x2, t)), (2.4)

which says that the flux at any point and time can be determined from the value

of the conserved quantity at that point and does not depend on the location of the

point. This type of equation is called autonomous [18]. Now further suppose that f

and q are smooth then with some modifications (2.4) becomes

∫ x2

x1

[
∂

dt
q(x, t) +

∂

∂x
f(q(x, t))

]
dx = 0, (2.5)

which implies that the integrand is identically zero. Since x1 and x2 are arbitrary

this implies

∂

dt
q(x, t) +

∂

∂x
f(q(x, t)) = 0. (2.6)
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As in [18], a substitution of (2.3) transforms the above equation into

∂

dt
q(x, t) + α

∂

∂x
q(x, t) = 0, (2.7)

which is is the differential form for the conservation laws. For another version of the

derivation of the conservations laws see [4, 20], where flux is represented as a vector

and the Divergence Theorem is employed. The discontinuous solution is explored

in[4, 18, 6, 29] among many others, but this work only considers a solution that is

continuous.

2.2 Advection Equation

The flux given by f(q) = αq, where α is a constant, becomes the advection equation.

The scalar advection equation is

qt + αqx = 0, (2.8)

and models advection or translation of a substance or data at a constant velocity. It is

a scalar, linear, constant-coefficient hyperbolic partial differential equation. Although

not used in the model for this work, the Cauchy problem, which is the simplest case

of (2.8), provides insight into the type of solution that should be expected. For a

unique solution, an initial condition is required along with boundary conditions. The

expectation is that the initial condition to be advected across the domain at speed α,
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so given some initial condition

q(x, 0) = η(x), (2.9)

the exact solution is of the form

q(x, t) = η(x− αt). (2.10)

It is easy to verify that this holds for any smooth function and satisfies (2.8).

2.2.1 Characteristics

The consideration of conservation laws here, is limited to the one dimensional case.

To discuss the properties of characteristic curves. The solution of q(x, t) is constant

along these characteristic curves in the x-t plane, that is q(x, t) is constant for any

x−αt that is constant in the x-t plane. From [18], this means that the characteristic

curves for a PDE are curves along which q(x, t) simplifies in some manner. Physically,

the expectation is that the values of q simply advect with constant velocity α, and

indeed this is what occurs. The flux function given by (2.3) is a linear function and

the characteristic curves are particularly useful here. Since f(q) is a linear function,

f ′(q) will be constant, hence all characteristics are lines which all have the same slope

in the the x-t plane. These characteristics can be used to solve (2.7) in conjunction

with initial condition (2.9). Again, the exact solution is given by (2.10) and the

conclusion is that the initial profile travels with constant speed α. In the case where

7



q(x, t) : R X R+ → Rn is a vector valued function, the conservation law is given by

∂

∂t
q + A

∂

∂x
q = 0, A ∈ Rn x n. (2.11)

This linear system can be solved in a manner much like that of the scalar case, but in

order to handle this coupled conservation law system convert from the state variables

q to characteristic variables, w and z, as in [18].

Characteristic Variables

As in [12] consider the first order linear system in (2.11) where q is a n-vector and A

is an n x n constant matrix. First assume that the system is strictly hyperbolic.

Definition 2 .1. A system of hyperbolic partial differential equations given in the

form

∂

∂t
q + A

∂

∂x
q = 0, (2.12)

is called strictly hyperbolic if all of the eigenvalues of f ′(q) = A are real and distinct

[30].

This work only considers the linear case, hence f ′(q) = A, which implies that

A is diagonalizable with real eigenvalues. Using the methods presented in [18, 4]

decompose A in the following manner,

A = RΛR−1, (2.13)
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where

Λ = diag(λi, λ2, . . . , λn), (2.14)

R = [r1, r2, . . . , rn], (2.15)

R−1 = [l1, l2, . . . , ln]T , (2.16)

where λi represent the eigen values of A and l and r represent the left and right eigen

vectors of A. Multiply (2.11) by R−1 and obtain

∂

∂t
w + Λ

∂

∂x
w = 0, (2.17)

where

w = R−1q, (2.18)

which are the characteristic variables. Thus the linear system decouples into a system

of advection equations which have speed of sound λi. Thus solve these advection

equations as previously discussed and then convert back to the state variables q. The

idea is that of superposition [11], which simplifies complex problems by breaking them

into smaller subproblems which may be solved one at a time. The results are combined

together to obtain the solution of the system. The solution is a superposition of waves
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and characteristic variables given by

q(x, t) =
n∑
p=1

wp(x, t)rp. (2.19)

So q(x, t) is a linear combination of the right eigenvectors at each point of the x-t

plane. Requiring the system (2.11) to be hyperbolic ensures that the eigenvectors of

mathbfA n vectors are linearly independent and that every q ∈ q is unique. These

curves are the characteristics, which as previously stated, are straight lines in the case

of a constant-coefficient system. Note that by letting L = R−1 be the left eigenvectors

of A,

characteristics wp(x, t) can be written as

wp(x, t) = lpq(x, t). (2.20)

Incorporating the initial data (2.9), the solution (2.19) may be written as

q(x, t) =
n∑
p=1

[lpη (x− λpt)]]rp. (2.21)

10



Figure 2.1: Characteristic lines

Note that this work only considers the case where the solution to the conservation

laws are smooth. For more information regarding considerations for a weak solution

see [20, 4] and the references therein.

2.2.2 Boundary Conditions

Consider a bounded domain, then (2.2) indicates how to set the boundary conditions

for the one-dimensional conservation laws. Due to the direction in which the char-

acteristic lines propagate, one of the two characteristic variables can be determined

from initial conditions. The other characteristic is set by boundary conditions. Li-

ons in [20] indicates that the number of boundary conditions needed depends on the

structure of the characteristics at that boundary. This means that the number of

boundary conditions needed depends on the direction of the characteristic lines at

the junction. The lines that can be traced back into the domain, similar to an up-
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wind method [19], will be determined by the initial condition. Determination of the

characteristics directed away from the boundary requires boundary conditions. Since

the problem is linear, the characteristics are determined by the eigenvalues of A and

are constant.

2.3 Numerical Methods

This work requires a numerical discretization scheme in order to attain results. The

numerical scheme that will be implemented throughout this work is the Lax-Friedrichs

method from [19].

2.3.1 Lax-Friedrichs

Recall that, the solution to the advection equation (2.8) is given by (2.10). There are

issues that can arise in the discretization of a hyperbolic equation, such as stability

and accuracy. These are particularly visible with the advection equation. Define q as

the exact solution of the PDE and the exact solution Q of q as the exact solution of

the discrete problem, that is,

Qn+1
j ≡ q (j∆x, n∆t) +O

(
∆x2

)
+O (∆t) (2.22)

With given quantities ∆x, ∆t, and constant speed α along with the approach of

LeVeque [19], consider the discretization method using a entered difference in space

and the forward difference in time given by,
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qx(x, t) = q(x+∆x,t)−q(x−∆x,t)
2∆x

+O (∆x2) , (2.23)

qt(x, t) = q(x,t+∆t)−q(x,t−∆t)
∆t

+O (∆t) . (2.24)

These give the method,

Qn+1
j −Qn

j

∆t
= − α

2∆x

(
Qn
j+1 −Qn

j−1

)
, (2.25)

which may be rewritten as

Qn+1
j = Qn

j −
a∆t

2∆x

(
Qn
j+1 −Qn

j−1

)
. (2.26)

This method gives the stencil in Figure (2.2), but this method has issues with stability

and so is not useful. Replacing Qn
j on the right hand side of (2.26) by the average

1
2

(
Qn
j−1 −Qn

j+1

)
gives the Lax-Friedrichs method,

Qn+1
j =

1

2

(
Qn
j−1 −Qn

j+1

)
− α∆t

2∆x

(
Qn
j+1 −Qn

j−1

)
, (2.27)

which is a much more useful method as it is stable.

13



Figure 2.2: Stencils for methods (2.25) and (2.26)

Although this lower order method, it is Lax-Richtmyer stable provided

∣∣∣∣a∆t

∆x

∣∣∣∣ ≤ 1. (2.28)

It is important to note that the LaxFriedrichs method introduces significantly more

diffusion than is required. As such it gives numerical results that are commonly badly

smeared unless a highly refined grid is used [18]. The condition set forth in(2.28) is

the Courant-Friedrichs-Lewy Condition (CFL).

Definition 2 .2. CFL Condition: A numerical method can be convergent only if its

numerical domain of dependence contains the true domain of dependence of the PDE,

at least in the limit as ∆t and ∆x both approach zero [18].

The CFL condition is a necessary condition that must be satisfied by a finite

volume or finite difference method in order to expect it to be stable and thus converge

to the solution of the differential equation as the grid is refined. Physically, this means

14



that the method must be used in a way that information propagates at the physical

speeds determined by the eigenvalues of f ′(q).

2.4 Parallel Computing

Traditional serial programming runs a problem or job on a single computer having

a single central processing unit (CPU). The CPU breaks the problem or jobs into a

discrete series of instructions which are executed sequentially. Only one instruction

may execute at any moment in time with this type of computing.

From Figure 2.3, it is clear that in a serial approach, all processing happens one

after the other, or sequentially. The next job is not triggered until the previous job has

finished. Speed improvement on serial processes is limited by an inability to increase

transfer speeds of operands between the data buffers and the functional units [21].

In the execution of a parallel program, tasks are simultaneous and work load is split

up on multiple CPUs in order to achieve more rapid results. The idea is that the

process of solving a problem can usually be divided into several smaller tasks, which

may be carried out concurrently with some communication overhead. It is important

to note that overall performance depends heavily on the overhead associated with

reads and writes to the global memory. Subjects such as barrier synchronization and

dynamic scheduling, while not central to this work, are central in the field of parallel

computing. Refer to [13] and the references therein for in depth discussion of these

and other concepts.
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Figure 2.3: Serial versus Parallel Processing

Coordinating communication between the various processors can create bottle-

necks and data integrity issues, which leads to slower execution or inaccuracies. Par-

allel programming is not simply an extension of serial programming; programs need to

“think in parallel” [21]. Thus parallel algorithms are more complex and require more

work and time from a programming standpoint. If one is not careful race conditions

can arise within a simulation. This occurs when the sequence or timing of processes

or threads depend on a shared state, which can create data corruption when events

“collide” or happen in an unintended order. Deadlock is another possible issue. This

happens when two or more competing actions are waiting for the other to finish,

resulting in neither ever completing.
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Figure 2.4: Deadlock [26]

Sequential processing is an sufficient method for processing data one step at a time

and is ideal in situations when the CPU is performing a calculation that depends

on the result of the previous calculation. Processing calculations, that cannot be

parallelized will slow down a parallel program. There are data dependency issues

with the parallelization of this type of simulation; however, this may be addressed

with the domain decomposition method discussed in Chapter 3.

In theory using additional resources will shorten completion time, thereby cre-

ating potential computational cost savings. Since parallel clusters can be built from

inexpensive commodity grade components, they are ideal for gaining speedup without

sacrificing cost. A single computing resource can only complete one task at a time,

while multiple computing resources can work on many tasks simultaneously. Par-

allel processing is much faster than sequential processing for repetitive calculations

on substantial amounts of data [26]. A parallel processor is capable of multitasking

on a large scale and can, therefore, simultaneously process several streams of data.

17



Compared with serial systems, parallel systems permit more freedom of expression in

problem analysis and programming [21]. Such freedom expands the type and depth

of problems that can approached and analyzed.

Flynn’s taxonomy dating from 1966 does not adequately reflect current architec-

tural designs it is nevertheless a solid guideline and remains useful today [21]. Flynn’s

taxonomy distinguishes multi-processor computer architectures by classification along

the two independent dimensions of instruction stream and data stream. Each of these

dimensions can have only one of two possible states: single or multiple.

Single Instruction, Single Data (SISD): A serial computer with the CPU acting

on one instruction stream and using one data stream as input, both in any one clock

cycle. The SISD systems have deterministic execution and are the oldest type of

computers. Some examples are older generation mainframes, minicomputers, work-

stations and single processor/core PCs.

Single Instruction, Multiple Data (SIMD): A type of parallel computer where all

processing units execute the same instruction at any given clock cycle. Each process-

ing unit can operate on a different data element. This is best suited for specialized

problems characterized by a high degree of regularity. This type has synchronous

and deterministic execution with two varieties: processor arrays and vector pipelines.

18



Most modern computers, particularly those with graphics processor units (GPUs)

employ SIMD instructions and execution.

Multiple Instruction, Single Data (MISD): A type of parallel computer in which

a single data stream is fed into multiple processing units. Each processing unit oper-

ates on the data independently by separate instruction streams. Few, if any, actual

examples of this type of parallel computer exist or existed.

Multiple Instruction, Multiple Data (MIMD): A type of parallel computer in which

every processor may be executing a different instruction stream and may be working

with a different data stream. The execution can be synchronous or asynchronous,

deterministic or non-deterministic. Currently, this is the most common type of par-

allel computer. Examples include most current supercomputers, networked parallel

computer clusters and multi-core PCs. The cluster used for this study is MIMD.

Figure 2.5: Flynn’s Taxonomy
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2.4.1 Limits

An obvious limit for small scale clustering, i.e. an at home scenario, can be limited

by funding and the necessary space to set up and maintenance the hardware. For

large scale clustering overall energy consumption to run and cool the CPUs present

concerns about energy consumption and its’ related costs.

A theoretical index, speedup, has been used for measuring the performance of par-

allel algorithms[21]. Amdahl’s law, also known as Amdahl’s argument, is named after

computer architect Gene Amdahl. It is used to find the upper limit of the expected im-

provement to an overall system when the system is only partially improved. Often, it

is used in parallel computing to predict theoretical maximum observed speedup using

multiple processors. Amdahl’s law states that the possible performance improvement

to be gained from using a faster mode of execution is limited by the fraction of the

time the faster mode can be used [21]. Every parallel algorithm has a sequential

component that will eventually limit speedup. According to Amdahl’s Law, potential

speedup is defined by the fraction of code that can be parallelized.

speedup =
1

1− p
, (2.29)

where no speedup corresponds to p = 0 and if all of the code is parallelized

p = 1. Theoretically speedup is then infinite. With the introduction of the number of
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processors performing the parallel fraction of work, the relationship can be modeled

by

speedupn =
1

1− p+ p
n

, (2.30)

where n is the number of processors.

Figure 2.6: Amdahl’s Law

Amdahl’s law is an algorithm that uses the law of diminishing returns that de-

termines the overall speedup of the program. The limit of speedupn as n approaches

infinity will simply be speedup, that is as n tends to infinity, the p/n term will tend

to zero. See [13] for a more rigorous definition of speed up and efficiency.

It is obvious that there are limits to the scalability of parallelism. For example:
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n p = .50 p = .90 p = .99

10 1.82 5.26 9.17

100 1.98 9.17 50.25

1,000 1.99 9.91 90.99

10,000 1.99 9.91 99.02

100,000 1.99 9.99 99.9

Table 2.1: Speedup

It follows that problems that increase the percentage of parallel time with size are

more scalable than problems with a fixed percentage of parallel time.
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CHAPTER III

TRANSPORT ON NETWORKS

A set of items, vertices with edge connections linking them is a network, commonly

termed a graph [28], see Figure (3.1). Networks can take widely varied forms and

are studied in a variety of different fields such as biological networks, social networks,

information networks, and technological networks. In fact the computer cluster used

for the numerical results in this work is a network of stand alone computers linked

together with an ethernet cable.

Figure 3.1: A sample network: Seven Bridges of Königsberg

Common networks that most people use include the Internet or social media plat-

forms. Some networks are manufactured or constructed such as electrical transmission

lines, road systems and the flow of traffic [3, 29], or irrigation systems [1], while other
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networks such as our cardiovascular system, ecosystems, and rivers [8] are natural.

Figure 3.2: A traffic network [14]

Figure 3.3: Design of an irrigation network system [1]

More interesting still are networks composed of a combination of man made struc-

tures which interpret or use biological structures. In [9] a brain to brain interface is

constructed to relay neural activity between mice through inserted electrical wiring

to form a neural link that shares sensorimotor impulses.
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Figure 3.4: Sensorimotor whisker subnetwork of mice [10]

This could be modeled such that each mouse acts as a vertex and the mechan-

ical connections between them as edges. The vertices represent the complex mouse

neocortex, which are difficult to model, while the edges represent the less complex

transfer of information from mouse to mouse. The simplified network for this is Figure

3.5.

Figure 3.5: Simple oval network

In [28], an object that consists of a vertex set and an edge set is defined as a graph.

Then any two elements of the vertex set are connected by one element of the edge

set and edges that connect to the same vertex are said to be adjacent to one another.
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Graphs are helpful in the sense that they can be represented with a drawing and allow

us to see connections and envision movement or flow throughout the network. These

ideas are formalized with the following definitions.

Definition 3 .1. A graph is a pair G = (V,E) such that E ⊆ V × V . Thus each

element of E is related to two elements of V . Elements of V are called vertices and

elements of E are called edges [7]

Two additional definitions [24], which prove helpful when describing network prop-

erties and problems are added.

Definition 3 .2. A restriction G|v of a graph G to a vertex v is defined by,

G|v = {e ∈ E|e = (w, v) or e = (v.w)}. (3.1)

This represents the set of all edges which connect to the vertex v

Definition 3 .3. The index Gv of a vertex v is defined by

G(v) = |G|v|. (3.2)

Thus the index of v is equal to the number of edges that connect to v on the graph.

Graph theory is a robust and well developed field. Mathematical theory of graphs

has become increasingly important as research has sifted from small group networks

towards large scale networks driven by big data and higher computing power. Graphs
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provide information about connectedness and clustering at a glance. When networks

are large and complicated, the graphical representation of a given network can become

less useful due to the high visual complications, as in Figure 3.6.

Figure 3.6: Multi-fluorescent labeled afferent and efferent pathways of a mouse neo-
cortex [10]

For the problem addressed in this section, consider one specific class of network in

which some substance or material is transported between vertices. The transport is

physically multi-dimensional, so the differential equation used to model this transport

can also be multi-dimensional. Here it is beneficial to use a network with edges and

vertices to represent portions of the domain. The edges define portions of the domain

that can be approximated by a one-dimensional equation while the more complex re-

gions of the domain that cannot be well approximated by one-dimensional equations

are defined as the vertices. Assume that the number of elements of the vertex set
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is small compared to the edge set. Consider a network transporting a trace amount

of fertilizer through irrigation pipes, as in Figure 3.3 where the majority of the edge

domain consists of straight pipes with small junctions, the vertices, connecting adja-

cent pipes together. Here consider a tracer to be an amount so small as to not effect

the fluid dynamics of the system. The flow of the tracer through the straight pipes

can be modeled with one-dimensional differential equations. At the pipe connections,

the vertices, enforce algebraic conditions that model the multi-dimensional effects of

the junctions. These conditions are referred to as junction conditions throughout this

work. The proper specification of junction conditions is always an important part of

the setup of a problem. In this work, the network of consideration is one in which

the edges engender linear hyperbolic equations to which the domain decomposition

method is applied to this linear hyperbolic network problem. Then resulting prob-

lem is solved numerically using serial and parallel architectures. Application of the

numerical and computational methods to resolve a specific class of network, similar

to that of Figure 3.3, is implemented to resolve such networks throughout this work.

3.1 Previous Work

Networks are useful and as such have been heavily applied. Biological networks

have been studied, including neural networks in [9, 23, 10] where maps of neural

activity have been produced through the use of tracer injections of chemicals and

bio-florescent materials. The statistical properties of “small world” type networks
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such as electrical power grids and air traffic routes are examined in [17]. Small world

networks are those in which travel from vertex to vertex is accomplished by the use

of few edges relative to the size of the overall network and are characterized by finite

dimensionality [17]. In [4], a model of laser drilling and that of gas flow through a

pipe are presented along with an analysis of each problem. Determination of simple

and accurate junction conditions to model the physical properties involved at vertices

is a subject of major research in network transport problems. Much of the work on

network type problems is directed at determining junction conditions and the well-

posedness of the problem. In [4], the treatment of these types of problems is explored

in a mathematical sense. Particular attention is paid to the numerical method used to

approximate the multi-dimensional physics where junction conditions, numbering at

least G|v, v ∈ V , are needed at each vertex and it is assumed the conditions are linear

in the state variables. If these conditions were not linear, they could be linearized

about density ρ and velocity u. The linear state variable junction conditions are

coupled and relate the network edges to one another.

3.1.1 Linear Acoustics Equations on a Network Domain

In this section the linear acoustic equation detailed in [18] and the notation of [5] are

employed. These equations and notations are used throughout the remainder of this

work. Define a network G = (V,E) as in (3 .1) and further let there be N edges,

denoted ei, on the unit interval [aei , bei ]. Note that the interval can be parameterized
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if necessary. The linear acoustic equations for any ei ∈ E of G are

 ∂

∂t
+

 0 Kei

1
ρei

0

 ∂

∂x


pei
uei

 (x, t) = 0 , x ∈ (aei , bei) , t > 0, (3.3)

where pei is the pressure and uei is the velocity. The quantity Kei is the bulk modulus

and pei is the density of the medium where both physical quantities are constant and

positive. The initial conditions are

pei(x, 0) = φei(x) , x ∈ [aei , bei ], (3.4)

uei(x, 0) = ψei(x) , x ∈ [aei , bei ]. (3.5)

Note that the eigenvalues of the coefficient matrix in (3.3) are λ1 = cei and λ2 = −cei

where cei =
√
Kei/ρei > 0 is the speed of sound. Observe that (3.3) is a coupled sys-

tem. A change of variables [18] is applied, to determine the characteristic variables

wei = 1
2Zei

(−pei + Zeiuei),

zei = 1
2Zei

(pei + Zeiuei),

in terms of pressure, velocity, and impedance Zei = ρeicei . This then turns (3.3)

into the decoupled characteristic system

∂

∂t

wei
zei

 (x, t) +

−cei 0

0 cei

 ∂

∂x

wei
zei

 (x, t) = 0. (3.6)
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Recall that a and b correspond to the vertices aei and bei of edge ei. Then denote

eai as the vertex on edge ei corresponding to aei with an analogous notation for ebi .

The adjacent edges to ei are designated in the following manner:

incoming adjacent edges at vertex aei as Aei =
{
ej ∈ E : ebj = eai

}
outgoing adjacent edges at vertex aei as Bei = {el ∈ E : eal = eai }

incoming adjacent edges at vertex bei as Cei =
{
em ∈ E : ebm = ebi

}
outgoing adjacent edges at vertex bei as Dei =

{
en ∈ E : ean = ebi

}
.

Figure 3.7 illustrates a sample network with adjacent edges to ei. Thus the structure

at any vertex can be defined using the sets

Aei =
{
ej ∈ E : ebj = eai

}
, (3.7)

Bei = {el ∈ E : eal = eai } , (3.8)

Cei =
{
em ∈ E : ebn = ebi

}
, (3.9)

Dei =
{
en ∈ E : ean = ebi

}
. (3.10)
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Figure 3.7: Adjacent edge sets

There is always one positive eigenvalue and one negative eigen value for the system

in (3.6), so only one boundary condition is necessary at each endpoint on any given

edge ei. The number of junction conditions is equal to the number of edges connected

at any given vertex v. The physical junction conditions that are imposed are conti-

nuity of pressure and conservation of momentum at v. The boundary conditions for

edge ei are then given by

pei(aei , t) = pej(bej , t) ∀ej ∈ Aei

pei(aei , t) = pel(bel , t) ∀el ∈ Bei

pei(bei , t) = pem(bem , t) ∀em ∈ Cei

pei(bei , t) = pen(ben , t) ∀en ∈ Dei


∀t > 0, and i = 1, . . . N , (3.11)
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for continuity of pressure and

uei(aei,t) =
∑

ej∈Aei

uej(bej , t)−
∑

el∈Bei
uel(ael , t)

uei(bei,t) =
∑

en∈Dei

uen(aen , t)−
∑

em∈Cei
uem(bem , t),

∀t > 0, and i = 1, . . . N ,

(3.12)

for conservation of momentum. The problem defined in (3.3)-(3.5) with junction

conditions (3.11)-(3.12) is well posed, see [15, 16], where a e the proof of the existence

and uniqueness of this general problem is presented.

3.2 Linear Transport Problems on a Caveman Network

Figure 3.8: Sample caveman network
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A caveman network is one where there are areas of high connectivity, represented as

caves, joined by areas of low connectivity, represented as lines. The linear transport

problem studied in this work represents a simplified caveman network where the oval

sections act as the caves or areas of high complexity, and the straight edge connections

act as areas of low complexity. Representation of this specific example as a cluster

which allows the complicated network to be visualized in an approachable manner.

Figure 3.9: Simplified cluster network

To solve the serial problem described in (3.3)-(3.5) with junction conditions (3.11)-

(3.12), the interior portion of the domain is updated for a given edge using a given

numerical method where the junction conditions determine the boundary values for

that edge. Note that these calculations are completed using the characteristic vari-

ables since the original system is coupled. This process is repeated for each time step

until final time T . This entire process is repeated until the solution converges is a
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predetermined way.

To solve this problem in parallel, the solution for each edge is solved on a CPU

node of the parallel computer with the same algorithm as above. The master CPU

node collates and combines all of the edge data to form a complete solution.

Now consider the particular class of network problems similar to those depicted

in Figures (3.10) and (3.9).

Figure 3.10: “Barrel” network

For the class of networks under consideration the degree of each vertex is always

exactly 3, that is, G3 at every vertex v ∈ V . Given constant matrix J ∈ R3×3, which

is determined by the conditions at each junction, the system of three equations that

relate the state variables

qei =

pei
uei

 , (3.13)
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of the three edges that are connected at vertex v is the system,

J


qe1

qe2

qe3

 = 0. (3.14)

As in (2.12) write Aei = ReiΛeiR
−1
ei

and then convert (3.3) into characteristic vari-

ables and obtain the decoupled system

∂

∂t
wei(x, t)− cei

∂

∂x
wei(x, t) = 0, (3.15)

∂

∂t
zei(x, t) + cei

∂

∂x
zei(x, t) = 0, (3.16)

which can then be solved using traditional methods.

3.2.1 Junction Conditions

In general junction conditions are difficult to set for an entire network. Junctions

can have a varying number of edges connected at that vertex and the characteristic

structure of the edges at the vertex further complicate generalization. The junction

conditions for the acoustic equations are given by physical constraints. For this work,

the junction conditions derived in [4] are applied. The first condition is continuity of

pressure, that is, the pressure p is required to be continuous from edge to edge across
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any given junction,

pej = pei ∀ ei ∈ Gv \{ej} j = 1, · · · , N . (3.17)

Secondly, require that the momentum coming into a junction and the momentum

leaving a junction are equal. Thus, enforce the condition that momentum is con-

served across a junction. In [4], Collins indicates that there are two ways in which to

denote this condition. Either the edges are of unit length or the a parameterization

is assigned. This work only considers unit edges though edges can have a flow that

is towards the vertex or away from the vertex. The edges whose flow is towards the

vertex are incoming and edges whose flow is leaving the vertex are outgoing. As in

[4], the set of incoming edges to v are denoted Ip(v) and Op(v) denotes the set of

outgoing edges to v. The conservation of momentum relation becomes

∑
ei∈Ip(v)

∣∣uei∣∣ =
∑

ej∈Op(v)

∣∣uej ∣∣. (3.18)

The conditions set forth in (3.17) and (3.18) provide exactly three conditions at

each vertex. Since three edges connect at each vertex, there are six characteristics

to be calculated in order to solve the system. Three of the characteristics can be

interpolated back into an edge domain while the remaining three are determined by

the junction conditions. Thus the system is readily determined at each junction.

The specific class of networks examined here is simplified in characteristic structure
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and limits the number of edges connected at a vertex. Recall that the number of

edges connected at each vertex is exactly three and that due to the direction of flow

on each, there are only two cases to consider when handling the characteristics. At

each junction, the characteristic variables with a direction of flow that is towards

the vertex can be determined by the methods in [2]. The value of either the w or

z characteristic at the junction is linearly interpolated by tracing the characteristic

lines using data from the previous time step. Then a system of equations is solved to

determine the remaining three characteristic values, which are then used to solve for

the state variables p and u on the boundary at each time step. The state variables

are related to the characteristic variables by

pei(v, t) = Zei(zei(v, t)− wei(v, t)) (3.19)

uei(v, t) = wei(v, t) + zei(v, t), (3.20)

where Zei = ρeicei is the impedance for i = 1, 2, 3. Using (3.17) - (3.20) the junction

conditions may be rewritten in terms of the characteristics variables. Noting that the

incoming variables ze1 , ze2 , and we3 may be calculated at the boundary by interpola-

tion to the known data at the previous time step [18, 29, 30]. Some rearranging gives
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the invertible system


−Ze1 0 −Ze3

0 −Ze2 −Ze3

1 1 −1




we1(v, t)

we2(v, t)

ze3(v, t)

 =


−Ze1ze1(v, t)− Ze3we3(v, t)

−Ze2ze2(v, t)− Ze3we3(v, t)

−ze1(v, t)− ze2(v, t) + we3(v, t)

 . (3.21)

The boundary conditions are defined on each edge for all time in this network. The

state variables on the boundary can then be calculated from the characteristic vari-

ables at each junction at each time step. It is worth noting that for networks with

configurations different from that under study here, the junction conditions yet hold

so that a system similar to (3.21) can be solved at each vertex to determine the state

variables at a boundary.

3.3 Domain Decomposition on a Network

To numerically solve a problem, such as that previously discussed, a computer is em-

ployed. For the network in this study, the problem is solved for each of the interior

domain nodes associated with each edge and then the solution for the boundaries

on each edge may be resolved. This process is repeated for each time step until the

final time is reached. This serial computational approach is an inefficient way to

solve this type of problem. Typically most simulations have areas where work can be

distributed and run simultaneously, i.e. in parallel. This is one of the reasons most

computers in use have new generation processors that run in parallel. Specifically,
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computers are commonly used that have dual or quad cores, meaning that they have

multiple processors. Assuming that a code used to solve a numeric problem is as

efficient as it can be, parallel processing is the only way to achieve a faster compu-

tational, unless it is possible to remove or manipulate data dependencies within an

algorithm. Memory requirements for direct solvers are too costly, as they require

O(m3) work [27] and iterative solvers are not robust enough. Different iterative and

direct solver methods are the needed. One such class of options are domain decom-

position methods. Domain decomposition is an approach that is often used for large

scale computational problems by splitting the domain into smaller sub-domains. This

method works by finding a solution of the problem on each sub-domain separately.

In particular, interest in these methods has peaked due to their applicability to the

numerical resolution of boundary value problems [20]. Implementation of the domain

decomposition method requires one to divide up the domain of the problem. In split-

ting the domain, artificial boundaries are created and boundary conditions must be

imposed along these new boundaries. This is where it is possible to remove data de-

pendencies and take advantage of the iterative process of this method. Rather than

using the current values on the adjacent sub-domain, the data from the previous iter-

ate is used, which means that the work is reduced to O(m2) and in some special cases

to O(m). The procedure begins with some initial iterate for the solution on all sub-

domains that is not the solution for all space and time. Then at each time step on each

sub-domain, solve the system at each interior domain node along with the associated
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boundary problem. This process is repeated until a predetermined stopping criteria,

commonly a small change from one iteration to the next, is achieved. Some of the

benefits of using domain decomposition include, ease when dealing with complicated

geometries, the ability to use different discretization on different sub-domains, and

that splitting the problem up into smaller problems without data dependency lends

itself to parallelization [4]. The proof of convergence results for many well-known

problems is presented in [25]. Domain decomposition for time-dependent problems

can be handled in different ways. In [20], the author presents an approach of temporal

discretization where a spatial problem is solved at each time step. Then, at each time

step, boundary data must be communicated across sub-domains. This means that

many small packets of data are communicated, at each time step, which may dra-

matically increase overhead [21]. In parallel processing it is more efficient to transfer

larger packets of information less frequently than it is to require frequent and small

communication across processors [26]. For this reason it is necessary to implement an

approach that partitions the spatial domain and then applies the time discretization

to each sub-domain. This allows a solution to be determined at each edge to final

time T on a separate CPU node. The entire solution on that sub-domain is then sent

back to the master CPU node. This approach greatly reduces overhead and allows for

full exploitation of the domain decomposition method and parallel processing speeds.

In this work only the linear acoustic equations on a network are considered, to which

domain decomposition is applied such that each sub-domain is one edge. In partic-
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ular the additive Schwarz [25] domain decomposition algorithm is employed, which

has been proven to converge using the maximum principal [20]. A further benefit

for large systems may be achieved through splitting the domain into into multi-edges

per sub-domain [20] solved with parallel algorithms. Resolution of the linear acoustic

problem is initiated by defining an initial iterate

q0
ei

(x, t) = hei(x, t) ∀ei ∈ E, x ∈ (aei , bei) , 0 < t ≤ T (3.22)

as the solution on each sub-domain, i.e. every edge. This initial iterate is defined

for all time t less than the final time T . The network is partitioned into S disjoint

connected sub-domains Hn

G = H1 ∪H2 ∪ · · · ∪ HS (3.23)

Hn = (Vn, En) ∀n = 1,2, . . . ,S. (3.24)
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Then solve

∂

∂t
qkei + Aei

∂

∂x
qkei = 0 ei ∈ Hn, x ∈ (aei , bei), 0, t ≤ T (3.25)

Ja



qkê1

...

qkêL

qk−1
ẽ1

...

qk−1
ẽN



= 0 êl ∈ G|a ∩Hn , ẽl ∈ G|a\Hn (3.26)

Jb



qkê1

...

qkêL

qk−1
ẽ1

...

qk−1
ẽL



= 0 êl ∈ G|b ∩Hn , ẽl ∈ G|b\Hn (3.27)

where a and b correspond to the vertices aei and bei of edge ei. The matrices Ja and

Jb correspond to the junction conditions at the endpoints of edge ei and relate the

state variables at iterate k with the ones on adjacent edges at iterate k − 1. These

junction conditions are the generalized conditions from [4, 5]. Equation (3.21) may
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then be rewritten in general as


−Ze1 0 −Ze3

0 −Ze2 −Ze3

1 1 −1




wke1(v, t)

wk−1
e2

(v, t)

zk−1
e3 (v, t)

 =


−Ze1ze1(v, t)− Zk−1

e3
wk−1
e3

(v, t)

−Zk−1
e2

zk−1
e2

(v, t)− Zk−1
e3

wk−1
e3

(v, t)

−ze1(v, t)− zk−1
e2

(v, t) + wk−1
e3 (v, t)

 (3.28)

Thus the boundary conditions are determined by interpolating the characteristics

whose flow is into the vertex followed by solving the invertible system in (3.28) for

the remaining characteristics. The state variables qei at vertex v are recovered via

qei =

pei
uei

 = R

wei
zei

 (3.29)

This process is repeated until the solution converges. Since the previous iterate from

the adjacent edges is used to determine the solution for edge ei, data transfers only at

the beginning and end of each iteration rather than at each time step. This greatly

reduces overhead and allows us to distribute computations for each edge to a CPU

node to solve, thereby completing the computations for each edge simultaneously

leading to decreased run time to solve the network problem. Here lies the power of

parallel computing.

44



CHAPTER IV

CONVERGENCE ANALYSIS

In this chapter, previous analysis for general networks from [5, 4] is examined and

then these results are applied to the specific network class studied in this work. The

network class under consideration is any network of similar structure to figure (3.9) or

(3.10). That is any caveman type network with clustered areas joined by areas of low

connectivity. The caves are represented by the oval regions and the straight edges act

as the low connectivity regions. Note that any size network can be constructed from

any number of caves with the same number of connecting edges. For the analysis of

this work, limit the number of edges connecting the caves is limited to one so that

there are only three edges connected to any given vertex.

4.1 Previous Work

Some convergence results for domain decomposition methods convergence are exam-

ined in [4]. Further, intuition as to how convergence occurs hs been addressed by the

author. For simplicity the two edge oval network is considered and defined to have

unit edge length and unit speed of sound and is partitioned so that there is one edge
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per sub-domain. This simple example is explored to examine convergence and then

the ideas are expanded to networks with varying edge length and speed of sound.

4.1.1 Convergence of Domain Decomposition

Since the advection equation is a hyperbolic problem, each edge only receives bound-

ary data on one boundary. Also, the speed of propagation is positive indicating that

data would enter on the left side boundary. Assume that the initial iterate is not

the solution for all space and time and further that given exact boundary conditions

exact solutions are obtained. That is, assume exact solutions so that any error other

than that of the initial iterate can be ignored. The latter is due to the assumption

that the only error induced will come from the initial iterate. Certainly, this is not

entirely realistic as the numerical solution is an approximate solution due in part

to computer representation of numbers. By nature, all numeric methods introduce

some error and most numbers can not be represented accurately by computers [27, 2]

which use floating point representations of numbers. Floating point numbers can also

create catastrophic cancellation, which is an extreme loss of significant figures [13].

Collins in [4] determines convergence properties of the domain decomposition method

under the above assumptions. The error is expected to decrease with each successive

iteration and the interval of exactness will increase along with the reduction of error.
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Figure 4.1: Error after one iteration of the oval network [4]

Figure 4.2: Error after two iterations of the oval network [4]

Since the problem is hyperbolic the speed of propagation is finite. Also boundary

data is only taken from one boundary. Thus the domain decomposition method is

expected to converge in a finite number of iterations.

4.1.2 Generalization to Networks

Consider the general network problem introduced in [4]. In particular, the network

G is any connected graph with unit edge length and varying constant speed of sound
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cei on each unit length edge ei ∈ E. As indicated in [4], a G with varying edge length,

Lei , can be parametrized with the change of variables ĉei =
x−aei
Lei

. The network is

further partitioned such that each sub-domain has exactly one edge. The convergence

variables are defined as follows

τ kei = sup
{
t > 0 : zei

(
x, t
)
− zkei

(
x, t
)

= 0 ∀x ∈
(
aei , bei

)}
, (4.1)

σkei = sup
{
t > 0 : wei

(
x, t
)
− wkei

(
x, t
)

= 0 ∀x ∈
(
aei , bei

)}
. (4.2)

They correspond to the largest time for which convergence has been attained on any

edge ei after k iterations for each characteristic variable wei and zei . The convergence

variables may be thought of as the height of the region of exactness [4]. As the

number of iterations increase, so do these times and the height of this region. The

area of exactness propagates through the domain in an advective manner. With each

successive iteration this area increases as the exact solution propagates from the left

boundary into the domain. The convergence variables may be denoted

τ kei 7→ wk
ei

(c) =: zkei (4.3)

σkei 7→ wk
ei

(−c) =: wkei (4.4)
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where wK
ei

(c) and wK
ei

(−c) are the characteristic variables associated with eigenvalue

c and −c. From [4], these convergence variables are further defined as

τ k+1
ei

= minej∈A,el∈B{τ kej , σ
k
el
}+ 1

c
(4.5)

σk+1
ei

= minem∈C,en∈D{τ kem , σken}+ 1
c

(4.6)

The following two lemmas are needed in later convergence analysis and represent how

the error propagates through the domain, that is they can be used to provide infor-

mation about τei and σei .

Lemma 4 .1. Let E(x, t) satisfy the following differential equation

∂
∂t
E(x, t) + α ∂

∂x
E(x, t) = 0 ∀x ∈ [0, 1], t > 0

E(x, 0) = 0 ∀x ∈ [0, 1]

E(0, t) = ψE(t) t > 0

where α > 0. If E(x, t) = 0 ∀x ∈ [0, 1] and t < ω then E(1, t) = 0 for t < ω + 1
α

[5]

Lemma 4 .2. Let F(x, t) satisfy the following differential equation

∂
∂t
F(x, t) + β ∂

∂x
F(x, t) = 0 ∀x ∈ [0, 1], t > 0

F(x, 0) = 0 ∀x ∈ [0, 1]

F(0, t) = ψF (t) t > 0

where β < 0. If F(x, t) = 0 ∀x ∈ [0, 1] and t < ω then F(1, t) = 0 for t < ω + 1
|β| [5]

These lemmas are used in the proof of the following theorem.
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Theorem 4 .3. Convergence Variable Update Formula: Given a connected network

G with the acoustic network problem as defined in [5, 4], if the network problem is

solved with the additive Schwarz domain decomposition algorithm with the network

partitioned such that each sub-domain contains exactly one edge, the convergence

variables satisfy the update formula

τ k+1
ei
≥ min ej∈A,el∈B

em∈C,en∈D

{
τ kej + 1

cej
, σkel + 1

cel
, τ kem + 1

cem
+ 1

cei
, σken + 1

cen
+ 1

cei

}
σk+1
ei
≥ min ej∈A,el∈B

em∈C,en∈D

{
τ kem + 1

cem
, σken + 1

cen
, τ kej + 1

cej
+ 1

cei
, σkel + 1

cel
+ 1

cei

}
For proof of Lemma 4 .1, Lemma 4 .2, and Theorem 4 .3 see [5].

4.2 Variable Speed and Constant Edge Length

The network G that studied in this work differs in that the degree of any vertex is

always 3, denoted as G|3 with the number of varying constant speeds limited to two,

c1 and c2 with c1 < c2. Here c1 corresponds to the speed of sound on the straight

edges of the network and c2 corresponds to the speed of sound on the curved outer

and inner oval edges of Figure 4.3. There are three possible flow configurations at

each vertex; two adjacent edge flows entering the vertex, two adjacent edge flows

leaving the vertex, and a combination of an adjacent edge flow entering while the

other adjacent edge flow is leaving the vertex. As such three cases are considered for

the convergence variables. Then denote each edge ei with a superscript O,I, or S to

represent the outside curved edges, inside curved edges, and the straight edges.
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Figure 4.3: Example network with edge designation

Corollary 4 .4. Convergence Variable Update Formula for Variable Speed and Con-

stant Edge Length. Given a connected network with an acoustic network problem

defined as above, then solve it with the Additive Schwarz domain decomposition al-

gorithm with exactly one edge per sub-domain; the convergence variables satisfy the

following update formulas:

τ k+1
eiO

≥ minej∈A
en∈D

{
τ kej1 + 1

c1
, τ kej2 + 1

c2
, σken1

+ 1
c1

+ 1
c2

, σken2
+ 1

c2
+ 1

c2

}
(4.7)

σk+1
eiO

≥ minej∈A
en∈D

{
σken1

+ 1
c1

, σken2
+ 1

c2
, τ kej1 + 1

c1
+ 1

c2
, τ kej2 + 1

c2
+ 1

c2

}
(4.8)

τ k+1
eiI

≥ min ej∈A,el∈B
em∈C,en∈D

{
τ kej + 1

c2
, σkel + 1

c1
, τ kem + 1

c1
+ 1

c2
, σken + 1

c2
+ 1

c2

}
(4.9)

σk+1
eiI

≥ min ej∈A,el∈B
em∈C,en∈D

{
τ kem + 1

c1
, σken + 1

c2
, τ kej + 1

c2
+ 1

c2
, σkel + 1

c1
+ 1

c2

}
(4.10)

τ k+1
eSi

≥ min ej∈A,el∈B
em∈C,en∈D

{
τ kej + 1

c2
, σkel + 1

c2
, τ kem + 1

c2
+ 1

c1
, σken + 1

c2
+ 1

c1

}
(4.11)

σk+1
eSi

≥ min ej∈A,el∈B
em∈C,en∈D

{
τ kem + 1

c2
, σken + 1

c2
, τ kej + 1

c2
+ 1

c1
, σkel + 1

c2
+ 1

c1

}
(4.12)
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Proof. The convergence variable update formulas for this network are a direct appli-

cation of Lemma 4 .1 and Lemma 4 .2 with speed of propagation c1 or c2 depending

on edge ei and a special application of Theorem 4 .3. The construction of the network

G means that three cases must be considered for the general convergence variable up-

date formulas. Denote the inside and outside curved edges as eIi and eOi respectively

with the straight edges denoted as eSi . Suppose that the speed of sound on any curved

edge eOi or eIi is c2 and the speed of sound on any straight edge eSi is c1, with c1 < c2.

Observe that Ek
eOi

, Fk
eOi

, Ek
eIi

, Fk
eIi

, Ek
eSi

, and Fk
eSi

satisfy lemmas (4 .1)-(4 .2) respectively

with the boundary conditions ψEO
(t), ψFO

(t), ψEI
(t), ψFI

(t), ψES
(t), and ψFS

(t).

Consider the curved outer edges of the oval, eOi . Here the case is where both adja-

cent edge flows are either entering or leaving the vertex. Without loss of generality

supposed that the configuration is as in Figure 4.3 and denote multiple entering or

leaving edges with subscripts 1 and 2. The boundary condition ψk+1
EO

(t) is obtained

by solving the linear system of junction conditions similar to (3.28). This leads to

τ k+1
eOi

≥ minej∈A
en∈D

{
τ kej1 + 1

c1
, τ kej2 + 1

c2
, σken1

+ 1
c1

+ 1
c2

, σken2
+ 1

c2
+ 1

c2

}
(4.13)

σk+1
eOi

≥ minej∈A
en∈D

{
σken1

+ 1
c1

, σken2
+ 1

c2
, τ kej1 + 1

c1
+ 1

c2
, τ kej2 + 1

c2
+ 1

c2

}
(4.14)

The remaining two cases are derived in a similar fashion. Consider the curved inner

edges of the oval, denoted eIi . Here the case is where one adjacent edge flow is entering

the vertex while the other adjacent edge flow is leaving the vertex depicted in Figure

(4.3), so that
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τ k+1
eIi ,c2

≥ min ej∈A,el∈B
em∈C,en∈D

{
τ kej + 1

c2
, σkel + 1

c1
, τ kem + 1

c1
+ 1

c2
, σken + 1

c2
+ 1

c2

}
(4.15)

σk+1
eIi ,c2

≥ min ej∈A,el∈B
em∈C,en∈D

{
τ kem + 1

c1
, σken + 1

c2
, τ kej + 1

c2
+ 1

c2
, σkel + 1

c1
+ 1

c2

}
. (4.16)

Lastly consider the update formulas for the straight edges and note that any incoming

flow and any outgoing flow will be from a curved edge with speed of sound c2. The

update formulas for this case are

τ k+1
eSi ,c1

≥ min ej∈A,el∈B
em∈C,en∈D

{
τ kej + 1

c2
, σkel + 1

c2
, τ kem + 1

c2
+ 1

c1
, σken + 1

c2
+ 1

c1

}
, (4.17)

σk+1
eSi ,c1

≥ min ej∈A,el∈B
em∈C,en∈D

{
τ kem + 1

c2
, σken + 1

c2
, τ kej + 1

c2
+ 1

c1
, σkel + 1

c2
+ 1

c1

}
. (4.18)

Theorem 4 .5. Given an acoustic network problem defined as in Corollary (4 .4)

where the speed of sound on the curved edges is constant denoted by c2 and the speed

of sound on the straight edges is constant denoted by c1 with c1 < c2. Then the total

number of iterations, k, needed for the convergence is bounded by k ≤ Tc2 + 1, where

T is the final time.

To prove Theorem 4 .5 an additional lemma is necessary.

Lemma 4 .6. For all k > 0 and 0 < c1 < c2, k−2
c2

+ 1
c1
> k−1

c2

Proof. We wish to show that k−2
c2

+ 1
c1
> k−1

c2
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We have c1 < c2, then

c1k − c1 > c1k − c2

c1k − 2c1 > c1k − c1 − c2

c1(k − 2) > c1(k − 1)− c2

c1(k − 2) + c2 > c1(k − 1)

c1(k − 2) + c2

c1c2

>
k − 1

c2

k − 2

c2

+
1

c1

>
k − 1

c2

Theorem 4 .5

Proof. We show by induction that the convergence variables satisfy

τ kei ≥
k − 1

c2

(4.19)

σkei ≥
k − 1

c2

(4.20)

for all edges ei and k > 0. Since the initial iterate is assumed to not be the solution

for all space and time, thus for all curved and straight edges τ k
eOi

= τ k
eIi

= τ k
eSi

= σk
eOi

=

σk
eIi

= σk
eSi

= 0. Thus the above inequalities hold for k = 1. Assume these hold for

k−1 and using the the convergence variable formulas from Theorem (4 .4) and lemma
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(4 .6), we have

τ keOi
≥ minej∈A

en∈D

{
k − 2

c2

+
1

c1

,
k − 2

c2

+
1

c2

}
=
k − 1

c2

σkeOi
≥ minej∈A

en∈D

{
k − 2

c2

+
1

c1

,
k − 2

c2

+
1

c2

}
=
k − 1

c2

τ keIi
≥ min ej∈A,el∈B

em∈C,en∈D

{
k − 2

c2

+
1

c2

,
k − 2

c2

+
1

c1

}
=
k − 1

c2

σkeIi
≥ min ej∈A,el∈B

em∈C,en∈D

{
k − 2

c2

+
1

c1

,
k − 2

c2

+
1

c2

}
=
k − 1

c2

τ keSi
≥ min ej∈A,el∈B

em∈C,en∈D

{
k − 2

c2

+
1

c2

,
k − 2

c2

+
1

c2

}
=
k − 1

c2

σkeSi
≥ min ej∈A,el∈B

em∈C,en∈D

{
k − 2

c2

+
1

c2

,
k − 2

c2

+
1

c2

}
=
k − 1

c2

Then setting τ k
eOi

= τ k
eIi

= τ k
eSi

= τ kei = T and σk
eOi

= σk
eIi

= σk
eSi

= σkei = T

and then solving for k, we obtain the desired inequality.

Thus an a priori bound on the number of required iterations for convergence

that is dependent on the faster speed c2 and final time T has been determined. It is

important to note that Theorem 4 .5 holds for any caveman network with any number

of caves where there are exactly two vertices per cave and when all vertices connect

exactly three edges. Thus Theorem 4 .5 extends to any network in the caveman class.

As any error except for the error in the initial iterate was not taken into consideration,

the mathita priori bound is an estimate of the true bound. Therefore it is expected

that the numerical results will require an actual number of iterations that may be

somewhat higher than the estimate.
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CHAPTER V

NUMERICAL RESULTS

In this chapter comparisons of the numerical results to the convergence analysis of

chapter 4 are presented. In addition comparisons of aspects of the results due to

serial or parallel computation are discussed. Using the Lax-Friedrichs method the

linear acoustic equations are solved across three configurations of a given network

class using the additive Schwarz domain decomposition algorithm. All configurations

are solved with serial and parallel architectures in order to compare run time and

to identify conditions such that parallel computation is advantageous. Theorem 4

.5 provides an estimate of the number of iterations to convergence for each of the

three configurations. The infinity norm [13] determines convergence of network. The

stopping criteria of the numerical algorithm is

||qk − qk−1|| < 10−6, (5.1)

where here

||V || = ||V ||∞ = maxi{|Vi|}. (5.2)
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This measure being satisfied indicates a small change from iteration to iteration.

Collins addresses justification of the update formulas of Theorem 4 .3 and by extension

Theorem 4 .4, [4]. Graphical plots of the numerical results at various iterations are

presented supporting the conjecture that error flows from the left boundary with a

finite constant speed. These results match the graphical results of Figures (4.1) and

(4.2).

5.1 Varying Speed and Constant Edge Length

For all numerical results, ρei and Kei are chosen such that the speed of sound on any

straight edge is c1 = 1 and is c2 = 2 on any curved edge. These speeds were chosen

for simplicity, but could be any numeric value. All runs used 100 domain nodes

per spatial edge with a CFL condition of 1
2
. To eliminate any run time discrepancies,

twenty simulation runs were completed in serial and in parallel for each configuration.

The linear acoustic equations

 ∂

∂t
+

 0 Kei

1
ρei

0

 ∂

∂x


pei
uei

 (x, t) = 0 , x ∈ (aei , bei) , t > 0, (5.3)

p0
ei

(x, 0) = sin(2πx) ei ∈ E, x ∈ (0, 1) (5.4)

uei(x, 0) = 0 ei ∈ E, x ∈ (0, 1) (5.5)
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for i = 1 · · ·N are then solved over the network configurations represented in (3.5),

(3.10), and (3.9). Observe that the initial conditions are continuous and satisfy the

junction conditions for every vertex. The junction conditions of continuity of pressure

and conservation of momentum discussed previously are enforced. The initial iterate

is chosen to be

p0
ei

(x, 0) = 5 x ∈ (0, 1), t > 0 (5.6)

u0
ei

(x, 0) = 10 ei ∈ E, x ∈ (0, 1), t > 0. (5.7)

As this is not the solution for all space and time, the choice assures that there will

be initial error. Results for three network configurations are presented. All three

configurations are small in scale but provide confirmation of the above analysis and

are consistent with that of [5], where Collins notes in that it is advantageous to

implement the domain decomposition method in parallel with P sub-domains and N

iterations to convergence provided

N < P . (5.8)

All networks are solved to final time T = 1.

5.1.1 Comparison of Numerical Results with Iteration Estimates

Results are presented for the three configurations of the caveman network class. The

results were computed using the methods and criteria above. In Table 5.1 the it-
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eration count results for all three configurations are presented. For the purely oval

configuration speed of sound used was c = 1. The analytical iteration estimate is

compared to the actual iteration count for serial and parallel architectures. The pro-

jected iteration count to resolved the problem on an oval network is the actual number

of iterations to achieve convergence. The resolution of the problem defined over the

barrel and cluster networks required two additional iterations numerically than what

was projected. Since any error other than that introduced from the initial iterate was

ignored, these additional iterations can be attributed to the numerical error intro-

duced from the numerical method, that is, discretization error. The extra iterations

were needed to address the error associated with the method. The problem defined

over the oval network required less additional iterations to achieve convergence than

that of the barrel or cluster networks. This is due to the simplicity of the oval net-

work connections. The iteration count is close to the estimated count, which shows

that the estimate is applicable for the caveman class of networks. Note that there

is no difference in the number of iterations needed for convergence to a solution for

either computational architecture implemented. A difference was not expected and

was corroborated by the results presented.
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Oval Barrel Cluster

Analytical Estimate 2 3 3

Actual Serial Iteration Count 2 5 5

Actual Parallel Iteration Count 2 5 5

Table 5.1: Numeric Results for the Oval, Barrel, and Cluster networks

Since the network is partitioned such that there is exactly one sub-domain per

edge, the number of sub-domains are equal to the total number of edges in any given

network configuration. Using (5.8) and considering the oval case, N = 2 and P = 2,

which requires 2 < 2, but 2 ≮ 2, which suggests that parallel processing is not

advantageous in this case. For the barrel case, N = 5 < 6 = P , thus it is expected

that the run time would decrease when processing in parallel. The expectation is

the same for the cluster where the number of iterations and processors is related by

5 < 9.

Each simulation was run twenty times. Use of a mean run time avoids inconsistent

data. The mean run time results given in seconds are presented in Table 5.2.

Oval Barrel Cluster

Serial Run Time (s) 39.34915 190.2321 118.847

Parallel Run Time (s) 15.89011 43.01524 62.68962

Percent change -59.62 -77.39 -47.25

Table 5.2: Run Time Results
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The above results demonstrate that run time decreased to solve the problem de-

fined on each of the configurations when implemented on a parallel architecture. The

results for the barrel and the cluster networks were expected but the results for the

oval network contradict the previous conclusion. This is possibly due to the fact that

the network is so small and simple that there is limited overhead. The overhead is

further limited by the small number of iterations to convergence. It is likely that

this is not an inconsistency in the estimate N < P , but rather a consequence of the

simplicity and rapid convergence of the problem defined on an oval configuration.

Notice that the decrease in run time for the barrel configuration is large. The barrel

network simulation was run twenty times per trial and the trial was run five times

with similar results. It is possible that the decrease is so dramatic on this configura-

tion because the network is large enough to reap the benefits of parallel computation

and maybe because the part of the problem farmed out to each CPU node requires

minimal message passing. Now further examine the run time graphically.

38.2 38.4 38.6 38.8 39 39.2 39.4
Figure 5.1: Oval Serial run time in seconds
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15.78 15.8 15.82 15.84 15.86 15.88 15.9 15.92
Figure 5.2: Oval Parallel run time in seconds

Here the run time results of computation for the oval network case on serial and

parallel architectures are presented. All of the times are clustered tightly together

such that the interquartile range is within the magnitude of 10−4, thus all of the

simulations reached convergence in approximately the same amount of time. The

upper whisker for the parallel plot is extended due to several run times being higher

in this configuration including two outliers at approximately 230 seconds. There are

similar clustering results when various initial iterates are selected, suggesting that the

initial iterate does not need to be accurate in order for convergence to occur. These

results are similar for the barrel and cluster configurations.

187.5 188 188.5 189
Figure 5.3: Barrel Serial run time in seconds

42.4 42.6 42.8 43 43.2 43.4 43.6
Figure 5.4: Barrel Parallel run time in seconds
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116 116.5 117 117.5 118 118.5 119
Figure 5.5: Cluster Serial run time in seconds

61.5 62 62.5 63 63.5
Figure 5.6: Cluster Parallel run time in seconds

In Figure 5.7 the run time for all of the configurations is compared using the me-

dian from the box plots above. The number of edges increases the overall run time as

well. This is particularly visible for the parallel run times on the three configurations.

These parallel times increase in a step like fashion as the the network complexity

increased even though convergence of the solutions for the problems defined for the

barrel and cluster networks occurred with the same number of iterations.

63



50

100

150

200

Oval Serial Oval Parallel Barrell Serial Barrell Parallel Tripod Serial Tripod Parallel

Network Configuration

T
im

e 
(S

ec
on

ds
)

Figure 5.7: Run time comparison for all configurations
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CHAPTER VI

CONCLUSIONS

In this work transport on a caveman network is considered on three configurations.

The dimensionality of the network was reduced to simplify computation. Junction

conditions for the networks were implemented that are consistent with those of previ-

ous investigations. The results achieved indicate that network problems solved using

the domain decomposition methods can be solved on parallel architectures to increase

computational efficiency. The convergence estimate determined analytically provides

an a priori estimate on the number of iterations required for convergence of the dis-

crete problem to to the exact solutions. However, the computations illustrate that

due to the introduction of error the actual iteration count will only be nominally

higher than predicted. Thus the estimate is meaningful and useful. Additionally,

the iteration count is directly proportional to the final time T and the largest speed

of propagation on the edges of the network. The iteration estimate is particularly

helpful in the assessment of whether one should consider application of the method

on a serial or parallel architecture. If resolution of the problem defined over the en-

tire network takes N iterations, then computation on a serial architecture costs O(1)
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work. However, if computed on a parallel architecture with P processors under the

constraint of (5.8), the work is reduced to O
(
N
P

)
. Therefore, as long as constraint

(5.8) is satisfied, it is advantageous to solve the problem defined over a network on

a parallel architecture. The results in Chapter 5, indicate (5.8) holds, thus provide

guidelines to determine when it is advantageous to resolve a problem using parallel

architecture.

6.1 Future Research

The scope of this work is narrow and there were many aspects and avenues that were

not explored. As mentioned in Chapter 1, the Lax-Friedrichs method is low order so

implementation of a better algorithm could reduce run time as well as iterations to

convergence. The networks studied in this work are simplified in structure, variation

of speed of sound, and edge length. Though these networks can extend into “cave-

man” like networks where there are high levels of clustering separated by single or

few connections, further research into more complex and widely applicable networks

is needed. In parallel computing, network structure plays a key role in designing op-

timal partitions for the parallelization process. As such, in depth analysis of optimal

partitioning of sub-domains of a give network should be pursued. Network structure

can be studied to identify key features in the domain geometry that affect the so-

lution. Other avenues that can be explored include optimization of the algorithm

and reduction of overhead transfer. The program used to run the simulation should
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be further optimized for efficiency. Exploration of memory allocation and use could

target areas of opportunity to further decrease run time.
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Appendix A

BEOWULF CLUSTER

The Beowulf computer cluster is comprised of nearly identical, commodity-grade com-

puter hardware resulting in a parallel computing cluster made from inexpensive per-

sonal computer hardware. Each processor is autonomous and may operate as a stan-

dalone computer. Ubuntu was installed on all CPU nodes of the cluster. Ubuntu is

an open source operating system, that is a Debian-based Linux operating system for

personal computers and other A net install was used to choose which software would

be downloaded and installed. A minimal install with no GUI was used for the CPU

nodes. The CPU nodes were all connected through a local area network(LAN) with

a switch. The LAN allowed the configuration of Secure Shell (SSH) and Network File

System (NFS).

Figure 1.1: a) Classic Ethernet connection b) Switched Ethernet connection
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On each CPU node a static IP and hostname was assigned. SSH is a network

protocol for initializing text-based shell sessions on remote machines. This makes the

operation of the cluster very easy. All the CPU nodes can be controlled through the

head CPU node using SSH. Open MPI requires that the head CPU node can SSH

into each machine with no password. To setup SSH, some cryptographic keys were

created on the head CPU node, and then copied to each CPU node. With these keys,

the master can SSH to any CPU node with no password necessary. NFS allows the

CPU nodes to access a directory on the master. This seems to be the easiest way to

transfer files between CPU nodes. To setup NFS, a directory on the head CPU node

was created, changes were made to its security to allow access, and then the directory

was exported. For the CPU nodes, a place to mount the shared directory was created

and changed to mount the directory automatically during the boot process.

A message passing interface (MPI) is a communications protocol used for program-

ming parallel computers. Open MPI is an open source messaging passing interface

implementation that is developed in a true open source fashion and maintained by

a consortium of academic, research, and industry partners. Open MPI is able to

pool resources, technologies, and expertise from across the computing community

and thus provides a high performance message passing library. As such it is used

in many TOP500 supercomputers. Open MPI provides a wrapper for compilers and

some simple commands to run a process on the cluster. Open MPI is the backbone

of the cluster. MPI also handles all of the load balancing which is nontrivial see [13].
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Appendix B

SPECIFICATIONS

Model CPU MHz Cache Size CPU Cores

AMD Athlon IIx4 630 Processor 800 512 KB 4

Intel Core 2 Duo CPU E7500 @ 2.93GHz 2926.2333 3072 KB 2

Intel Core 2 Duo CPU E7500 @ 2.93GHz 2926.20 3072 KB 2

Intel Core 2 Duo CPU E7500 @ 2.93GHz 2926.01 3072 KB 2

Intel Core 2 Duo CPU E7500 @ 2.93GHz 2926.01 3072 KB 2

Intel Core 2 Duo CPU E8400 @ 3GHz 2000 6144 KB 2

Intel Core 2 Duo CPU E8400 @ 3GHz 2000 6144 KB 2

Intel Core 2 Duo CPU E7500 @ 2.93GHz 1600 3072 KB 2

Intel Core 2 Duo CPU E7500 @ 2.93GHz 1600 3072 KB 2

Table 2.1: Cluster CPU Specifications

The AMD Athlon processor is not a true quad core processor. It is referred to as a

hyper-threaded core which is different that a true quad core in that a hyper-threaded

core share the execution resource.
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