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ABSTRACT

The de�nition of the Galois group of any �eld extension F/K is stated, and

the fundamental theorem of Galois theory for algebraic Galois �eld extensions

is proven. Further uncovering the structure of �eld extensions via their Galois

groups, a de�niton of the the Krull topology is given that makes the Galois group

a topological group that is in fact a pro�nite group. Topological properties of

Galois groups are studied along with the connections these properties have with

the corresponding �eld extensions. A topological characterization of Galois groups

of algebraic Galois extensions is then given. The group structure of Galois groups

is analyzed via their dependence on and similarities to the structure of �nite

groups. Most of the main theorems are followed by examples where the theorem

is applied to a speci�c case. The thesis is concluded with a brief discussion of

analog Galois theories in other mathematical disciplines.
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Introduction

Evariste Galois (1811-1832), a french mathematician, embarked on studying

the insolvability of quintic polynomials by radicals. Though a proof was given by

Abel in 1824, Galois himself employed ideas that now make up the more modern

subject of Galois theory within his proof. His method involved analyzing the

group of permutations of the roots of the irreducible polynomials that describe

the algebraic extension in order to uncover structure theorems. For example,

Galois showed that the insolvability of the group of permutations of the roots of a

quintic implies the insolvability of the quintic by radicals. In fact, his proof is what

led to the term solvable for the groups having the properties Galois presented.

The theory has, for the most part, reached maturity within the subject of �elds,

and the ideas have been generalized and applied to other distinct mathematical

disciplines. In this thesis, I attempt to give a somewhat complete description

of Galois groups of in�nite dimensional extensions that aid in their calculations

and to give an analysis of the topological and group theoretic structure of Galois

groups via local considerations. The main theorems presented show that the

structure of in�nite Galois groups depends on the speci�c normal subgroups of

�nite index and that the group is made up of the corresponding quotients.
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Chapter I

The Galois Correspondence

Let K be a �eld and F/K an extension �eld of K . The dimension of F/K is the

dimension of F as a vector space over K and is denoted by [F : K ]. We denote the

Galois group of the extension as G[F/K ] = {α ∈ Aut(F) : α(k) = k ∀k ∈ K }. In

other words, G[F/K ] is all the automorphisms of F that are also K-isomorphisms.

The Galois correspondence refers to a bijection between all intermediate �elds of

the extension and certain subgroups of the group of automorphisms of the �eld

F. In fact, all these subgroups in the correspondence are contained in G[F/K ].

This is clearly due to the fact that the subgroups in the correspondence are

determined by which elements of F they �x and thereby depend upon the vector

space structure. We will see this dependence as we develop and discuss the theory.

For any subgroup H < G[F/K ], let H
′

= {x ∈ F : α(x) = x ∀α ∈ H }. Similarly,

for each intermediate �eld L, let L
′

= {α ∈ G(F/K ) : α(x) = x ∀x ∈ L} = G[F/L].

When F is understood, we will denote G[F/L] by G[L]. We call H
′

the �xed �eld

of H. Also, we write (H
′

)
′

= H
′′

and the same for intermediate �elds. We say

that a subgroup H of G[F/K ] is Galois closed if H = H
′′

. Similarly, we say that

an intermediate �eld is Galois if L
′′

= L. In particular, we say that an extension

F/K is Galois if K = K
′′

, that is, if the �xed �eld of G[F/K ] is precisely K . If an

extension F/K is Galois, then for every α ∈ G[F/K ] and x ∈ F −K , α(x) ∈ F −K .

In particular, if x is algebraic over K with irreducible polynomial f ∈ K [x], then

α(x) is also a root of f . We exploit this fact in the following theorem.

Theorem 1. An algebraic extension F/K is Galois if and only if F is a splitting

�eld of a set T of separable polynomials in K [x]. More generally, if an extension

F/K is Galois, then the sub�eld E consisting of all the elements in F that are

algebraic over K is a splitting �eld of a set T of separable polynomials in K [x].
2



Proof. (⇒) Let u ∈ F with irreducible polynomial f ∈ K [x]. Let u = r1, . . . , rn be

the distinct roots of f that are in F and de�ne g(x) = (x − r1) · · · (x − rn) ∈ F[x].

Since the coe�cients of f are in K , then every element of G[F/K ] simply permutes

the roots of f and hence the roots of g. Thus, the coe�cients of g are �xed by

every element of G[F/K ]. Since F/K is Galois, then g ∈ K [x]. The irreducibility of

f along with the shared root u of f and g implies that f | g. Since deg g ≤ deg f

and g is monic, we must have f = g. That is, f is separable and splits in F.

Let {bi : i ∈ I} be a basis of F over K and let fi be the irreducible polynomial

of bi in K [x]. The preceding paragraph implies that each fi is separable and

splits in F. Therefore, F is the splitting �eld of the set { fi : i ∈ I} of separable

polynomials in K [x].

(⇐) Let u ∈ F −K with irreducible polynomial f ∈ K [x]. Let v be another root

of f . Since f is separable and splits in F, v , u and v ∈ F. The irreducibility

of f gives a K-isomorphism K (u) → K (v) that maps u to v which extends to a

K-isomorphism α ∈ G(F/K ) with α(u) = v , u so that F/K is Galois. �

Let K be a �eld and T the set of all separable polynomials in K [x]. A splitting

�eld of T is called the separable closure of K and is denoted K sep. Since any

two splitting �elds of a set of polynomials are isomorphic, K sep is unique up to

isomorphism. Also, if F1/K and F2/K are two extensions such that F1 � F2,

then it is easy to see that G[F1/K ] � G[F2/K ]. We now can present the following

de�nition.

De�nition. Let K be a �eld and K sep a separable closure of K . The absolute

Galois group of K , denoted Gal (K ), is de�ned to be G[K sep/K ].

We note that for any intermediate �eld L of an algebraic Galois extension F/K ,

F/L is always Galois, but L/K may not be as we prove below. L/K is, however,

an algebraic separable extension. Thus, L/K is Gaois if and only if it is a splitting

�eld, that is, if every polynomial in K [x] that has a root in L actually splits in
3



L[x]. Hence, L/K is Galois if and only if it is a normal extension. These two facts

give us the motivation for Lemma 2 and Theorem 3.

Lemma 2. Let F/K be an algebraic Galois extension with intermediate �eld L

such that F/L is Galois. Then G[F/L] is normal in G[F/K ] if and only if for

each α ∈ G[F/K ] and x ∈ L, α(x) ∈ L.

Proof. Suppose G[F/L] is normal in G[F/K ] with F/L Galois. Let α ∈ G[F/K ],

x ∈ L, and β ∈ G[F/L]. Then α−1 βα(x) = x so that βα(x) = α(x). Hence,

α(x) ∈ L since F/L is Galois.

Conversely, suppose that for each α ∈ G[F/K ] and x ∈ L, α(x) ∈ L. Let

β ∈ G[F/L], α ∈ G[F/K ], and x ∈ L. Then αβ(x) = α(x) so that α−1 βα(x) = x.

Again, since F/L is Galois, then α−1 βα ∈ G[F/L] whence G[F/L] is normal in

G[F/K ]. �

Theorem 3. Let F/K be an algebraic Galois extension with intermediate �eld

L. Then F/L is Galois and L/K is normal if and only if G[F/L] is normal in

G[F/K ] in which case G[L/K ] � G[F/K ]/G[F/L].

Proof. Theorem 1 says that F/K being algebraic Galois implies it is the splitting

�eld of a set of separable polynomials in K [x] which are also in L[x] so that F can

be realized as the splitting �eld of a set of separable polynomials in L[x]. Hence,

F/L is Galois.

Now let us suppose that L/K is Galois, and let x ∈ L. Since F/K is algebraic,

there is an irreducible polynomial f ∈ K [y] with x as one of its roots. L/K being

Galois means that f splits in L[y] so that all of its roots are in L. Thus, for any

α ∈ G[F/K ], since α(x) is also a root of f , we must have α(x) ∈ L. Lemma 2 then

implies that G[F/L] is normal. For the reverse direction, let G[F/L] be normal in

G[F/K ] and x ∈ L − K . Since F/K is Galois, there is an α ∈ G[F/K ] such that

α(x) , x. By Lemma 2, α |L∈ G[L/K ] so that L/K is indeed Galois.
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For the isomorphism, observe that, when L/K is Galois, the mapping G[F/K ]→

G[L/K ] de�ned by α 7→ α |L is a well de�ned epimorphism with kernel G[F/L]. �

The following two lemmas highlight the importance of �nite dimensional inter-

mediate �elds in any �eld extension and give us bounds with which the Galois

correspondence arises.

Lemma 4. Let L,M be intermediate �elds of the extension F/K with M ⊂ L. If

[L : M] is �nite, then [M
′

: L
′

] ≤ [L : M]. In particular, if [F : K ] is �nite, then

|G[F/K ]| ≤ [F : K ].

Proof. See [1] pg. 247. �

Lemma 5. Let H,J be subgroups of G[F/K ] with H < J. If [J : H] is �nite, then

[H
′

: J
′

] ≤ [J : H].

Proof. See [1] pg. 248. �

Corollary 6. If F/K is a �nite Galois extension, then every subgroup of G =

G[F/K ] is Galois closed.

Proof. Note that G is �nite by Lemma 4. For any subgroup H of G, H < H
′′

.

Applying Lemma 4 and Lemma 5, |H
′′

| ≤ [F : H
′

] ≤ |H |. �

Corollary 7. If F/K is a �nite dimensional Galois extension, then the inequali-

ties in Lemma 4 and Lemma 5 are equalities.

Proof. Let L ⊂ M be intermediate �elds and H < J subgroups of G = G[F/K ].

Theorem 3 implies that L
′′

= L and M
′′

= M. Applying Lemma 5, [M : L] =

[M
′′

: L
′′

] ≤ [L
′

: M
′

]. This together with Lemma 4 gives [L
′

: M
′

] = [M : L]. A

similar proof with the subgroups H and J shows that [H
′

: J
′

] = [J : H]. �

Corollary 8. If F/K is an algebraic Galois extension, then every �nite subgroup

of G[F/K ] is Galois closed.
5



Proof. Let H be a �nite subgroup of G[F/K ]. Then [F : H
′

] ≤ |H | by Lemma

5 so that [F : H
′

] is �nite and hence |H
′′

| ≤ [F : H
′

] is also �nite by Lemma 4.

Thus, |H | ≤ |H
′′

| ≤ [F : H
′

] ≤ |H |. �

Theorem 9. (The Galois Correspondence) Let F/K be an algebraic Galois ex-

tension with Galois group G. Then there is a bijection between the set of all

intermediate �elds and all Galois closed subgroups of G.

Proof. We map each intermediate �eld L to G[F/L]. This mapping is easily seen

to be the desired bijection by Theorem 3 and 7. �

Example 10. Consider the splitting �eld Q
(

4
√
2, i

)
of the irreducible x4 − 2 over

Q. De�ne ωn =
4
√
2in so that x4 − 2 = (x − ω1)(x − ω2)(x − ω3)(x − ω4) in

Q
(

4
√
2, i

)
[x]. We consider the Galois group G = G

[
Q

(
4
√
2, i

)
/Q

]
as a subgroup

of S4 acting on {1, 2, 3, 4} where each j = 1, 2, 3, 4 represents ω j . It is easy to

see that
{
1, i, 4
√
2, 4
√
4, 4
√
8, 4
√
2i, 4
√
4i, 4
√
8i
}
forms a basis of the extension in question

so that |G | = 8 by 7. Each subgroup of order 8 is isomorphic to D4, and there

are precisely three of them by the Sylow Theorems. The three subgroups are

〈(13) , (1234)〉, 〈(12) , (1324)〉, and 〈(14) , (1243)〉. Note that ω2
1 = ω2

3 and ω2
2 =

ω2
4. Thus, for a permutation to correspond to a transformation, the just stated

algebraic equations must remain satis�ed. This implies that (12) and (14) are not

permissible so that the Galois group must be 〈(13) , (1234)〉. The subgroup lattice

of G and the subspace lattice of Q
(

4
√
2, i

)
/Q are given below. For the subgroup

lattice, the generators are listed instead of the whole subgroup. Each lattice is

in correpondence with the other by the Galois bijection stated in Theorem 9.

For example, the subgroup generated by (1234) has �xed �eld Q(i) so that their

locations match within each respective lattice.
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We de�ne the Galois mapping of an extension to be the mapping as in the

proof of Theorem 9, namely {L : L an intermediate f ield o f F/K } → {H : H <

G[F/K ]} de�ned as L 7→ L
′

. Regardless if the extension is algebraic or Galois,

7



if the Galois mapping is well de�ned, then we call the pair {F/K : G[F/K ]} a

Galois system. If there is a subgroup H of G[F/K ] such that every subgroup of

H (including H) has a preimage under the Galois mapping, then H is called the

minimal Galois group of F/K . In particular, if there is a minimal Galois group H

of F/K such that the Galois mapping is a bijection, we will then refer to the Galois

mapping as a Galois bijection and the pair {F/K : H } as a full Galois system.

Thus, as an example of the notation, we may restate the Galois Correspondence

(Theorem 9) as follows: If F/K is an algebraic Galois extension with Galois group

G, then {F/K : G} is a Galois system where the image of the Galois mapping is

precisely the collection of all Galois closed subgroups of G. Also, in view of 6, we

have the following: If F/K is a �nite Galois extension, then {F/K : G[F/K ]} is a

full Galois system. We now present a theorem of Soundararajan that is a partial

converse to the Galois correspondence theorem.

Theorem 11. Let F/K be a �eld extension with Galois group G and H < G. If

{F/K : H } is a full Galois system, then F/K is algebraic Galois and H = Gt, the

torsion elements of G.1

Proof. {F/K : H } being a full Galois system implies that G
′

= H
′

= K ; hence, F/K

is Galois. Let X be a transcendence base of F over K . Then F is an algebraic

extension of K (X ). For any k ∈ F − K (X ), there is an irreducible polynomial

f ∈ K [x] that is separable and splits over F as, say, f (x) = (x− x0)(x− x1) · · · (x−

xn) ∈ F[x] with each xi distinct and x0 = k. Thus, there is an α ∈ G such

that α(k) = x j for some j , 0 since F/K is Galois. F/K (X ) is therefore an

algebraic Galois extension whence {F/K (X ) : G} and hence {F/K (X ) : H } is a

Galois system by Theorem 9. Furthermore, every Galois closed subgroup of H

has a preimage. Thus, to show that F/K is algebraic, i.e., X is empty, it su�ces

to show that each subgroup of H is Galois closed. This, however, is clear since

{F/K : H } is a full Galois system.

1The theorem, proof of H = Gt , and notation are all due to [9].
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Let α ∈ G[F/K ] be of �nite order with �xed �eld L. Then F/L is �nite by

Lemma 5. Furthermore, 〈α〉 is Galois closed by 8. Thus, 〈α〉 < H and α ∈ H so

that Gt ⊂ H. For the reverse inclusion, suppose there is a nontrivial β ∈ H of

in�nite order and let M = 〈β〉
′

. Let p be prime and de�ne Mp as the set of elements

of F that have degrees a power of p over M. Hence, Mp is an intermediate �eld and

G[Mp/M] is trivially normal in G[F/M] = 〈β〉 so that Mp/M is therefore Galois

by Theorem 3. Also, there exists a t ∈ N such that G[F/Mp] =
〈
βt〉 whence

G[Mp/M] � Zt . Thus, since [F : M (
⋃

q prime
q,p

Mq)] = [Mp : M], F/M (
⋃

q prime
q,p

Mq)

corresponds to a �nite subgroup of 〈β〉 � Z which must be the trivial group so

that [F : M (
⋃

q prime
q,p

Mq)] = [Mp : M] = 1 and M = Mp. Since F = M (
⋃

q prime
Mq) and

p was arbitrary, then F = M. This contradicts the nontriviality of β so that we

must have H ⊂ Gt and thus H = Gt . �

It is quite worth noting the dependence on �nite intermediate extensions in

algebraic Galois extensions. Let F denote the set of all intermediate �elds L of

an algebraic Galois extension F/K such that L/K is a �nite normal extension.

Then F =
⋃

L∈F
L/K . Hence, F/K is simply a union of �nite extensions. Also,

the importance of the torsion elements, and hence �nite intermediate extensions,

can clearly be seen in Theorem 11. Another way of seeing this dependence is by

noting that Theorem 1 simply says that a Galois extension is the union of splitting

�elds of a single separable polynomial where the union runs over all irreducible

polynomials that have a root in F. Let H denote the set of all subgroups of

G = G[F/K ] that correspond to an intermediate �eld in F through the Galois

correspondence. H is thus the set of all Galois closed normal subgroups with

�nite index. To further exploit this dependence and utilize its usefulness, we

develop a topology on the Galois group using H as a fundamental system of open

neighborhoods of the identity. This topology is called the Krull Topology.
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Chapter II

The Krull Topology

We �rst discuss topological groups in a somewhat general sense while keeping

in mind the applications to Galois groups. Let G be a group that is also a

topological space. G is a topological group if the mappings (g1, g2) 7→ g1g2

and g1 7→ g−11 are continuous with respect to the topology de�ned on G. Here,

(g1, g2) ∈ G × G where G × G is given the product topology. We may combine

these two continuity conditions into one by forcing the mapping (g1, g2) 7→ g1g
−1
2

to be continuous. Furthermore, this condition is equivalent to the following: given

g1, g2 ∈ G and a neighborhood N of 1 ∈ G, there exists neighborhoods K1 and K2

of 1 such that (g1K )(g2K )−1 ⊂ g1g
−1
2 N . A neighborhood U is called symmetric

if U = U−1 where U−1 is the collection of all inverses of elements in U. A �lter

base F on a set X is a nonemtpy collection of subsets that is closed under �nite

intersections. Additionally, it is required that the empty set is not an element

of F . In topological terms, a �lter base de�nes the smallest neighborhoods the

topology contains, hence the name �lter. We �rstly present how to obtain a

useful �lter base of a topological group and, conversely, how to uniquely de�ne a

topology when given a suitable �lter base.

Theorem 12. Let G be a topological group. There exists a fundamental system

H of closed neighborhoods of 1 such that (i) each element of H is symmetric, (ii)

for each H ∈ H there is a K ∈ H such that K2 ⊂ H, and (iii) for each H ∈ H

and g ∈ G, there is a K ∈ H such that K ⊂ g−1Hg.

Proof. See [3]. �

We proceed to show how one can uniquely de�ne a topology on a set when

given a �lter base of that set. Given a �lter base Ω on a set X , we de�ne the
10



associated �lter of Ω on X as the set of all subsets of X that contain an element

of Ω and will be denoted as Ω̃.

Proposition 13. Let X be a set. Suppose that, for each x ∈ X , there is a �lter

base Ωx of X satisfying (i) for each ω ∈ Ωx, x ∈ ω and (ii) �nite intersections of

elements in Ωx are in Ωx. Then there exists a unique topology on X such that, for

each x ∈ X , Ω̃x is the collection of all neighborhoods of x and Ωx is a fundamental

system of neighborhoods of x.

Following the notion of Theorem 13, we prove a similar theorem for topological

groups that is somewhat a converse of Theorem 12.

Theorem 14. Let G be a group and H a �lter base satisfying: (i) each element

of H is symmetric, (ii) for each H ∈ H , there exists a K ∈ H such that K2 ⊂ H,

and (iii) for each H ∈ H and g ∈ G, there exists a K ∈ H such that K ⊂ g−1Hg.

Then there exists a unique topology de�ned on G such that G is a topological group

and H is a fundamental system of neighborhoods of 1 ∈ G.

Remark. In the following proof, we don't require conditions (i) and (ii) separately;

rather, we only require that for each H ∈ H , there is a K ∈ H such that KK−1 ⊂

H. However, every topological group has a fundamental system of neighborhoods

of 1 ∈ G that are symmetric so that whether we require (i) and (ii) separately or

(ii) only, the same topological group will arise.

Proof. Let H ∈ H . Conditions (i) and (ii) implies there is a K ∈ H such that

KK−1 = K2 ⊂ H so that 1 ∈ H. It is clear to see that gH is �lter bases since H

is. Also, each gH ∈ gH has g ∈ gH since 1 ∈ H. Thus, for each g ∈ G, we have a

�lter base gH satisfying the conditions of Theorem 13 so that there is a unique

topology such that the collection of all neighborhoods of g is precisely gH̃ and

gH is a fundamental system of neighborhoods of g.

We proceed by showing that the mapping G×G → G given by (g1, g2) 7→ g1g
−1
2

is continuous in order to conlcude that G is topological group when given the
11



above topology. Let g1, g2 ∈ G and g1g
−1
2 Ñ a neighborhood of g1g

−1
2 where

Ñ ∈ H̃ . Thus, there is a N ∈ H such that N ⊂ Ñ . By conditions (ii) and (iii),

there is a K ∈ H such that K2 ⊂ g−12 Ng2. Applying condition (i) and the above

facts, we see that,

(g1K )(g2K )−1 = g1KK−1g−12 = g1K2g−12 ⊂ g1(g−12 Ng2)g−12 = g1g
−1
2 N ⊂ g1g

−1
2 Ñ .

Hence, the mapping (g1, g2) 7→ g1g
−1
2 is indeed continuous so that G endowed

with the speci�ed topology is a topological group. �

Corollary 15. Let G be a group and H a �lter base of normal subgroups. Then

there exists a unique topology such that G is a topological group and H is a

fundamental system of neighborhoods of 1 ∈ G.

Proof. The �lter base H clearly satis�es the conditions of Theorem 14. �

For an algebraic Galois extension F/K , recall that F is the collection of all �-

nite dimensional intermediate Galois extensions and H the corresponding normal

subgroups of �nite index. To see that H is a �lter base, let M, N ∈ H . Then

(M
⋂

N )
′

/K is a �nite dimensional intermediate extension so that (M
⋂

N )
′

∈ F .

Since M and N are Galois closed, then it is quite easy to see that (M
⋂

N )
′′

=

M
′′ ⋂

N
′′

= M
⋂

N and thus, M
⋂

N ∈ H .

De�nition. Let F/K be an algebraic extension with H as de�ned above. The

topology de�ned on G[F/K ] in Theorem 14 with �lter base H is called the Krull

Topology.

Remark. Unless otherwise stated, G[F/K ] will be endowed with the Krull topol-

ogy. Note that if F/K is �nite Galois, then the Krull topology coincides with the

discrete topology. Let g ∈ G[F/K ]. A neighborhood of g is of the form gG[F/L].

For any h ∈ G[F/K ], h ∈ gG[F/L] i� h |L= g |L. Thus, two automorphisms of

F/K are near in a topological sense if they meet on some intermediate �eld L
12



that is �nite Galois over K . In particular, for any H1, H2 < G[F/K ], if H
′

1 = H
′

2,

then H1 = H2.

The remark above gives some insight to the structure uncovered, or, better

yet, highlighted by the Krull topology. Before we further explore the Krull topol-

ogy, we present some useful facts concerning subsets, particularly subgroups, of

topological groups.

Proposition 16. If H is a subgroup of a topological group G, then H is a topo-

logical group.

Proof. The continuity conditions satis�ed by G concering the group operation and

inversion apply to the subgroup H so that the proposition follows. �

Proposition 17. Let C be a closed subset of a topological group G. For any

g ∈ G, gC, Cg, and C−1 are closed in G.

Proof. If c is a limit point of gC, it is easy to see, then, that g−1c is a limit point

of C and hence g−1c ∈ C and c = gg−1c ∈ gC. Similarly for Cg and C−1. �

Proposition 18. Let N be an open subset and U any subset of a topological group

G. Then U N , NU, and N−1 are open in G.

Proof. Let un ∈ U N . Then there is a neighborhood K of n such that K ⊂ N . Then

uK is a neighborhood such that un ∈ uK ⊂ U N whence U N is open. Similarly for

NU and N−1. �

Proposition 19. Let H be the system of neighborhoods of 1 in a topological group

G. Then, for any subset A, A =
⋂

H∈H
AH =

⋂
H∈H

H A.

Proof. This follows from 18. �

Proposition 20. If H is a subgroup of a topological group G, then H is also a

subgroup.
13



Proof. This follows from 17. �

Proposition 21. Every open subgroup H of a topological group G is closed.

Proof. 18 gives that each coset of H is open so that H = G−
⋃

g∈G−H
gH is closed. �

Proposition 22. Every closed subgroup H of �nite index in a topological group

G is open.

Proof. 17 gives that each coset is closed. Since H is of �nite index,
⋃

g∈G−H
gH can

be made into a �nite union so that it is also closed and hence, H = G −
⋃

g∈G−H
gH

is open. �

Proposition 23. A subgroup H of a topological group G is closed if and only if

there exists a closed neighborhood U of 1 such that H
⋂

U is closed. In particular,

if H contains a closed neighborhood of 1, then H is closed.

Proof. The forward direction is trivial so suppose that there is a closed neighbor-

hood U of 1 such that H
⋂

U is closed. There is a symmetric neighborhood V of

1 such that V2 ⊂ U by Theorem 12. Let h be a limit point of H and {hi}i∈I a net

in H that converges to h. Then h−1 is also a limit point of H so that there is a

k ∈ V h−1
⋂

H. Also, there is a j ∈ I such that for all i ≥ j, hi ∈ hV and hence

khi ∈ V h−1hV = V2 ⊂ U. Thus, khi ∈ H
⋂

U for all i ≥ j. Since H
⋂

U is closed,

kh ∈ H
⋂

U whence h = k−1kh ∈ H2 = H and H is closed. �

We now continue on to study the topological structure of Galois groups and

how that structure relates to the algebraic structure.

Theorem 24. Let F/K be an algebraic Galois extension with Galois group G =

G[F/K ]. Then H < G is Galois closed if and only if H is closed in the Krull

topology. In particular, H = G[F/H
′

].
14



Proof. Let H < G be Galois closed. Then H = H
′′

=
⋂

x∈H ′
G[F/K (x)]. For each

x ∈ H
′

, G[F/K (x)] ∈ H so that each subgroup in the intersection is open and

hence closed in the Krull topology whence H is closed.

Suppose now that H is topologically closed and let g ∈ G − H (the case where

G = H is trivial). Then there exists an N ∈ H such that gN
⋂

H is empty so

that g < H N . Let h ∈ H. If g |N ′= h |N ′ , then h−1g ∈ N and g ∈ H N . Thus,

g < H N implies g |N ′, h |N ′ for each h ∈ H so that there exists an x ∈ N
′ ⋂

H
′

such that g(x) , x and hence, g < H
′′

. Therefore, g < H implies g < H
′′

so that

H
′′

⊂ H. Since H
′′

is closed by the preceding paragraph, then H
′′

= H = H. �

We take a moment to generalize Theorem 24 for possibly nonalgebraic exten-

sions.

De�nition. Let F/K be a Galois extensions and G = G[F/K ]. De�ne the set

H ∗ to be the collection of subsets of the form G − gG[F/K (x)] with g ∈ G and

x ∈ F. Then H ∗ forms a subbase for a topology on G which we will call the

Galois topology. 2

Note that, in general, G is not a topological group when endowed with the

Galois topology. However, when the extension is algebraic, we have the following.

Theorem 25. If F/K is an algebraic Galois extension, then the Galois topology

coincides with the Krull topology de�ned on G = G[F/K ].

Proof. The open subgroups of G under the Galois topology are of the form⋃ (
n⋂

i=1
G[F/K (xi)]

)
=

⋃
G[F/K (x1, ..., xn)] so that the �lter base H for the Krull

topology is also a �lter base for the Galois topology. Hence, by Theorem 14, the

theorem follows. �

The usefulness of this topology can be seen in the following generalization of

Theorem 24.

2This topology, as well as the proof of Theorem 26, is due to Soundararajan. See [10].
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Theorem 26. Let F/K be a Galois extension. A subgroup H < G[F/K ] is Galois

closed if and only if it is closed in the Galois topology.

Proof. Let H be Galois closed. Then H = H
′′

=
⋂

x∈H ′
G[F/K (x)] which is closed in

the Galois topology since G[F/K (x)] = G −
⋃

g<G[F/K (x)]
gG[F/K (x)].

Now suppose that H is closed in the Galois topology. Let h ∈ H
′′

. We proceed

to show that h is in fact a limit point of H via contradiction. That is, suppose

that there is a basis element
n⋂

i=1

(
G − giG[F/K (xi)]

)
that contains h but does

not intersect H so that H ⊂
n⋃

i=1
giG[F/K (xi)]. We may assume that no coset in

the covering of H can be omitted. Thus, Neumann's Lemma3 implies that H

is covered by �nitely many cosets of
n⋂

i=1
G[F/K (xi)] = G[F/K (x1, ..., xn)] so that

each element of the set X = {x1, ..., xn} has a �nite number of images under H.

Let L = H
′

({h (x) : h ∈ H, x ∈ X }). Then L/H
′

is a �nite and hence algebraic

extension. Furthermore, each element of L − H
′

is moved by some element of

H so that G[L/H
′

]
′

= H
′

. Thus, the extension is also Galois and the mapping

H → G[L/H
′

] given by restriction is an epimorphism by Theorem 3. Since h ∈ H
′′

,

it also restricts to L so that there is an h∗ ∈ H such that h |L= h∗ |L. Recall

that h <
n⋃

i=1
giG[F/K (xi)] so that h∗ <

n⋃
i=1

giG[F/K (xi)]. This contradicts the

hypothesis that H ⊂
n⋃

i=1
giG[F/K (xi)] whence h is indeed a limit point of H and

hence H = H
′′

. �

Corollary 27. Let K be a �eld. All closed subgroups of Gal (K ) correspond to all

separable algebraic extensions of K. In particular, all closed normal subgroups of

Gal (K ) correspond to all algebraic Galois extensions of K.

Proof. This follows immediately from Theorem 3 and Theorem 24. �

Now to analyze the topological structure of Galois groups.

3If a group is covered by �nitely many cosets, none of which can be omitted, then each coset is
of �nite index. See [6] for Neumann's proof.

16



Lemma 28. Let F/K be an algebraic Galois extension. G[F/K ] is isomorphic to

a closed subspace of the compact product space
∏

L∈F
G[L/K ].

Proof. De�ne ϕ : G →
∏

L∈F
G[L/K ] by α 7→

∏
L∈F

α |L. The proof of Lemma 2 shows

that ϕ is a well de�ned group homomorphism. Since F =
⋃

L∈F
L/K , then the

injectivity of ϕ follows. Denote the projection mapping
∏

L∈F
G[L/K ]→ G[L/K ] by

πL. Since πLϕ
−1({1}) = G[F/L], then πLϕ is continuous for each L ∈ F and hence

the continuity of ϕ follows. Fix L ∈ F . De�ne FL = {M ∈ F : M ⊂ L}. Note

that FL is a �nite set. Then ϕ(G[F/L]) = (
∏

M∈FL
{1M } ×

∏
M∈F −FL

G[M/K ])
⋂
ϕ(G)

which is open in ϕ(G). Hence, G � ϕ(G).

It is easy to see that ϕ(G) = {(αL)L∈F ∈
∏

L∈F
G[L/K ] : πL2 (αL) |L1= πL1 (αL)

∀L1 ⊂ L2} =
⋂

L1⊂L2

{(αL)L∈F ∈
∏

L∈F
G[L/K ] : πL2 (αL) |L1= πL1 (αL)}. Since all the

projection mappings are continuous and each G[L/K ] is Hausdor�, then ϕ(G) is

closed in the compact product space
∏

L∈F
G[L/K ]. �

Theorem 29. If G is the Galois group of an algebraic Galois extension F/K,

then G is a totally disconnected compact topological group.

Proof. Observe that
⋂

L∈F
G[F/L] = {1} since F =

⋃
L∈F

L/K and hence G is totally

disconnected. Lemma 28 implies that G is compact. �

Proposition 30. Let F/K be an algebraic Galois extension with Galois group G.

Then the open subgroups of G are precisely the groups G[F/L] where L/K is a

�nite intermediate extension; furthermore, the closed subgroups are precisely the

intersections of open subgroups.

Remark. The collection of all �nite intermediate extensions is quite di�erent from

F , the collection of all �nite Galois intermediate extensions.

Proof. Let H be de�ned as usual and let G[F/L] be a subgroup with L/K a �nite

intermediate extension. Then there is a �nite Galois extension L̃ that contains L.

Thus, G[F/L̃] < G[F/L] and G[F/L] =
⋃

g∈G[F/L]
gG[F/L̃] is open by 18.
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Let H < G be an open subgroup. Then there is a H̃ ∈ H with H̃ < H. Let L̃

be the �xed �eld of H̃ and consider the natural epimorphism π : G → G/G[F/L̃].

Then π(H) = G[L̃/L] for some �nite intermediate �eld L of L̃/K by 8. Thus,

H < G[F/L]. Since H is closed by 21 and H
′

= L, then Theorem 9 implies that

H = G[F/L].

The intersection of open subgroups is closed by 21. For any closed subgroup

H, H =
⋂

M∈H
H M by 19 which is an intersection of open subgroups by 18. �
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Chapter III

Profinite Groups: The Structure of Galois groups

Let I be a directed set and Top the category of topological spaces. An inverse

system (Ti, fi j )i, j∈I is a collection of objects Ti in Top and continuous functions

fi j : Tj → Ti for i ≤ j such that fii is the identity map on Ti and fik = fi j f j k

whenever i ≤ j ≤ k. An inverse limit of the inverse system (Ti, fi j )i, j∈I is an

object T ∈ Top together with continuous functions πi : T → Ti called projections

satisfying πi = fi jπ j whenever i ≤ j. Additionally, T is determined according

to the following universal property: for any other object D ∈ Top together with

continuous functions ψi : D → Ti satisfying ψi = fi jψ j whenever i ≤ j, there exists

a unique continuous function ϕ : D → T such that ψi = πiϕ for each i ∈ I. Firstly,

we address the existence and uniqueness of inverse limits in Top.

Theorem 31. Given any inverse system (Ti, fi j )i, j∈I in Top, there exists an in-

verse limit (T, ϕi)i∈I . Furthermore, for any other inverse limit (D, ψi)i∈I of (Ti, fi j )i j∈I ,

there exists a homeomorphism Φ : D → T such that ψi = ϕiΦ for each i ∈ I.

Proof. Let T = {t ∈
∏
i∈I

Ti : πi (t) = fi jπ j (t) ∀i, j ∈ I, i ≤ j} where πi denotes the

projection
∏
j∈I

Tj → Ti and de�ne the continuous mappings ϕi = πi |T for i ∈ I. We

show that (T, ϕi)i∈I is an inverse limit of (Ti, fi j )i, j∈I .

By construction, ϕi = fi jϕ j whenever i ≤ j. Let (D, ψi)i∈I be an inverse limit

of (Ti, fi j )i, j∈I . De�ne the map φ̃ : D →
∏
i∈I

Ti by d 7→ {ψi (d)}i∈I . Clearly ψi = πi φ̃

for each i ∈ I so that φ̃ is continuous. Furthermore, for any i, j ∈ I with i ≤ j and

d ∈ D, πi (φ̃(d)) = ψi (d) = fi jψ j (d) = fi jπ j (φ̃(d)) whence Imφ̃ ⊂ T which enables

us to de�ne the continuous mapping φ : D → T by d 7→ φ̃(d). Note that φ is

unique by construction. We now see that ψi = ϕiφ for each i ∈ I so that (T, ϕi)i∈I

is indeed an inverse limit of (Ti, fi j )i, j∈I .
19



We now proceed to the uniqueness of an inverse limit. Let (D, ψi)i∈I be any other

inverse limit of (Ti, fi j )i, j∈I . Then there exists unique continuous maps Φ : D → T

and Ψ : T → D such that ψi = ϕiΦ and ϕi = ψiΨ. Thus, ϕi = ϕiΦΨ and

ψi = ψiΨΦ. Since Φ and Ψ are unique, then ΦΨ = id |T and ΨΦ = id |D whence

Φ is a homeomorphism. �

Thus, given any inverse system (Ti, fi j )i, j∈I in Top, we may de�ne the inverse

limit as in the proof of Theorem 31 which is unique up to homeomorphism. We will

denote the inverse limit as lim
←−−

Ti together with the projection maps ϕi : lim
←−−

Tj → Ti.

Topologically, we let
∏
i∈I

Ti have the product topology and view lim
←−−

Ti as a subspace

of
∏
i∈I

Ti. We now concern ourselves with some topological properties that the

inverse limit inherits from the elements of the inverse system. If each Ti is totally

disconnected, then lim
←−−

Ti is totally disconnected. This follows from topological

spaces maintaining totally disconnectedness through products and subspaces. We

also have the following.

Theorem 32. If (Ti, fi j )i, j∈I is an inverse system in Top such that each Ti is

Hausdor� and compact, then lim
←−−

Ti is compact.

Proof. By the Theorem of Tychono�,
∏
i∈I

Ti is compact. Thus, it su�ces to show

that lim
←−−

Ti is closed in
∏
i∈I

Ti. Recall that lim
←−−

Ti = {t ∈
∏
i∈I

Ti : πi (t) = fi jπ j (t) ∀i, j ∈

I, i ≤ j} so that lim
←−−

Ti =
⋂
j∈I
{t ∈

∏
i∈I

Ti : πi (t) = fi jπ j (t) ∀i ≤ j}, the intersection

indexing through all j ∈ I. Thus, lim
←−−

Ti is closed since each πi and fi jπ j is

continuous and each Ti is Hausdor�. �

Thus, if (Ti, fi j )i, j∈I is an inverse system in Top such that each Ti is Hausdor�

and compact, then lim
←−−

Ti is Hausdor� and compact. In particular, if each Ti is

totally disconnected and compact, then lim
←−−

Ti is totally disconnected and compact.

Since we are concerned with topological groups, we prove one more important

fact about inverse limits in Top concerned with topological groups. When talking

about topological groups, the term homomorphism (resp. isomorphism) will refer
20



to a mapping that is a group homomorphism (resp. group isomorphism) that is

also continuous. We say that an inverse system (Ti, fi j )i, j∈I in Top is an inverse

system of topological groups if each Ti is a topological group and each fi j is a

homomorphism.

Theorem 33. If (Ti, fi j )i, j∈I is an inverse system of topological groups, then lim
←−−

Ti

is a topological group. Furthermore, lim
←−−

Ti is uniquely determined up to isomor-

phism.

Proof. Since
∏
i∈I

Ti is a topological group, then it su�ces to show that lim
←−−

Ti is a

subgroup of
∏
i∈I

Ti. Since lim
←−−

Ti = {t ∈
∏
i∈I

Ti : πi (t) = fi jπ j (t) ∀i, j ∈ I, i ≤ j} with

each πi and fi j homomorphisms, then lim
←−−

Ti contains the identity and is closed

under the group operation and taking inverses.

The fact that lim
←−−

Ti is uniquely determined up to isomorphism follows immedi-

ately from Theorem 31. �

Lemma 34. If (Ti, fi j )i, j∈I is an inverse system of nonempty compact Hausdor�

spaces, then lim
←−−

Ti is nonempty.

Proof. We write lim
←−−

Ti =
⋂
j∈I

X j as in Theorem 32 where X j = {t ∈
∏
i∈I

Ti : πi (t) =

fi jπ j (t)∀i ≤ j} is a closed set. Each X j can be considered nonempty by the Axiom

of Choice. For each i, j ∈ I with i ≤ j, X j ⊂ Xi. Thus, the collection {Xi : i ∈ I}

of closed sets has the �nite intersection property whence the compactness of
∏
i∈I

Ti

implies that
⋂
j∈I

X j is nonempty. �

De�nition. A group G is pro�nite if G � lim
←−−

Gi with each Gi a �nite group given

the discrete topology.

We immediately see that G is a compact totally disconnected topological group

by Theorem 32. There are many structural similarities between pro�nite groups

and Galois groups of algebraic Galois systems. They, in fact, give the same class

of groups. We will prove this shortly. That being said, we will examine part of
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the structure of pro�nite groups the analog of which we have yet to describe for

Galois groups of algebraic Galois extensions.

Firstly, we present a theorem of van Dantzig, the proof of which is outlined in

the appendix.

Theorem 35. (van Dantzig's Theorem) Let G be a totally disconnected locally

compact topological group. Then the collection of all compact open subgroups of

G forms a basis of neighborhoods of 1.

We are now ready to give a characterization of pro�nite groups.

Theorem 36. If G is a compact totally disconnected topological group, then G is

pro�nite.

Proof. By van Dantzig's Theorem, the collection H ∗ of all open subgroups forms

a basis of compact open neighborhoods of 1. Elements of H ∗ have �nite index

by compactness so that for any H ∈ H ∗, UH =
⋂
g∈G

gHg−1 is open. Thus, the

collection H = {UH : H ∈ H ∗} forms a basis of normal compact open subgroups.

De�ne ϕ : G →
∏

H∈H
G/H by g 7→ (gH)H∈H . The details in the proof of Lemma

28 apply here to show that G � ϕ(G) = lim
←−−
H∈H

G/H. �

Corollary 37. If H is a closed subgroup of a pro�nite group, then H is pro�nite.

Proof. H is clearly compact and totally disconnected. Thus, the result then fol-

lows from 16 and 36. �

Proposition 38. If F/K is an algebraic Galois extension, then G[F/K ] is pro�-

nite.

Proof. The proof of Lemma 28 gives G[F/K ] � ϕ(G[F/K ]) where ϕ : G[F/K ] →∏
L∈F

G[L/K ] is de�ned by α 7→ (α |L)L∈F . Furthermore, the same proof shows

clearly that ϕ(G[F/K ]) = lim
←−−
L∈F

G[L/K ] so that G[F/K ] is indeed pro�nite. �
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Note. It is important to note that it is necessary for F/K to be both algebraic

and Galois. It's easy to consider why F/K being only algebraic would not su�ce.

For an extension that is Galois but not algebraic, consider Q(x1, x2)/Q with x1

and x2 indeterminates. Under the Krull topology, since there are no intermediate

�elds that are �nite over Q except Q itself, G[Q(x1, x2)/Q] is an in�nite discrete

group so that it is not compact. Consequently, G[Q(x1, x2),Q] is not pro�nite.

Example 39. Consider the extension Q
(

3
√
2, 3
√
3, ζ3

)
/Q as a splitting �eld of

(x3 − 2)(x3 − 3) where ζ3 is a third root of unity di�erent from 1. It is easy to

check that the Galois groups of Q
(

3
√
2, ζ3

)
/Q and Q

(
3
√
3, ζ3

)
/Q, corresponding

to the splitting �elds of x3 − 2 and x3 − 3 respectiviely, are both S3. Lemma 28

implies that the Galois group G = G
[
Q

(
3
√
2, 3
√
3, ζ3

)
/Q

]
is a subgroup of S3 × S3.

It is not the whole space, however, since ζ3 is in both splitting �elds. 38 implies

that the permutations in S3×S3 that are admissible are the ones which projections

onto Q
(

3
√
2, ζ3

)
and Q

(
3
√
3, ζ3

)
are compatible. Upon construction of the Galois

groups of the intermediate splitting �elds, one sees that the odd permutations

transpose ζ3 and ζ23 while even permutations leave elements in common with

Q
(

3
√
2, ζ3

)
and Q

(
3
√
3, ζ3

)
unchanged. Thus, G is the nonabelian subgroup of

S3 × S3 of order 18 de�ned by pairing even permutations with even permutations

and odd permutations with odd permutations. There are 9 elements of order 2

and 8 elements of order 3. The cylce graph is shown below.
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Theorem 40. Let G be a topological group. Then the following are equivalent.

(1) G is the Galois group of some algebraic Galois extension.

(2) G is totally disconnected and compact.

(3) G is pro�nite.

(4) There exists a set of normal compact open subgroups {Gi}i∈I that forms a

basis of neighborhoods of 1 ∈ G such that
⋂
i∈I

Gi = {1}.

Proof. (1) ⇒ (2) is Theorem 29. (1) ⇒ (3) is 38. (1) ⇒ (4) follows from (2) and

van Dantzig's Theorem (Theorem 35). (4) ⇒ (2) and (3) ⇒ (2) are trivial. We

conclude the proof by showing (2) ⇒ (1)4.

Let G be a totally disconnected compact topological group. De�ne H as in

the proof of 36 and let L = {gH : g ∈ G, H ∈ H }. Let f be a �eld. We consider

the elements of L as indeterminates and de�ne F = f (L), the set of all rational

functions of the indeterminates in L with coe�cients in f . G acts naturally

on L by g(g
′

H) = gg
′

H and hence on F as f − automorphisms. Let K =

{x ∈ F : g(x) = (x) ∀g ∈ G}.

We show that F/K is algebraic. Let x ∈ F. Denote the set {g ∈ G : gx = x}

as Gx. If the indeterminates that appear in the rational expression of x are
{
gi j Hi : i = 1, ..., n, j = 1, ..., m

}
, then the normality of each Hi implies that

⋂
i

Hi ⊂

4The proof of (2) ⇒ (1) is due to [7].
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Gx so that Gx is open. By compactness of G, Gx is of �nite index whence the

orbit of x under the action of G is �nite, say {x, x2, ..., xr }. Then (y − x)(y −

x2) · · · (y − xr ) ∈ K [y] so that x is algebraic over K .

Since the polynomial in the preceding paragraph has distinct roots, then x is

separable over K so that F/K is a separable extension. For each x ∈ F, denote

the orbit of x under the action of G as Ox. Since the polynomial for x discussed

in the previous paragraph is split, then F =
⋃

x∈F
K (Ox)/K is a normal extension.

Hence, F/K is an algebraic Galois extension.

It remains to be shown that G = G[F/K ]. Since G
′

= G[F/K ]
′

= K , then it

su�ces to show that G is closed in G[F/K ] by Theorem 9. Let H be an open

normal subgroup of G[F/K ] and L = H
′

. Since H is of �nite index, then F/L

is �nite by Lemma 5. Hence, since F/L is algebraic, L = K ( f1, ..., f s) for some

f1, ..., f s ∈ F. The preceding paragraphs show that each G f i is closed. Thus,

since
⋂
i

G f i ⊂ G
⋂

H, G
⋂

H is closed by 23. Hence, G is closed agian by 23

which completes the proof. �

De�nition. Let G be a pro�nite group. A subset X of G will be said to generate

G if (i) (X ) = G where (X ) is the subgroup generated by the set X and (ii) every

open subgroup of G intersects X at all but a �nite number of points.

We present one theorem regarding generating sets that we use for analyzing when

a Galois group is metrizable.

Theorem 41. Let G be a pro�nite group and X a generating set. Then |X | ≤ ℵ0

if and only if G admits a countable descending chain of open normal subgroups

G = G0 > G1 > · · · such that
⋂

n∈N
Gn = {1}.

Proof. See [8]. �
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De�nition. Let G be a topological group. G is said to be metrizable if there

exists a countable fundamental system of neighborhoods {Un}n∈N, of 1 satisfying

the conditions of Theorem 14 such that
⋂

n∈N
Un = {1}.

It is well known that this de�nition is equivalent to the existence of an invariant

metric for G such that the metric space topology corresponds with the original

topology. For a proof of this, see [3].

Theorem 42. Let F/K be an algebraic Galois extension with Galois group G.

Then G is metrizable if and only if H is countable. In particular, G is metrizable

if and only if it is a splitting �eld of a countable set of polynomials.

Proof. Follows immediately from Theorem 1 and Theorem 41. �

We now move on to some group structure. We have seen how one can com-

pletely describe an algebraic Galois extension F/K by describing its �nite Galois

extensions, F , which corresponds to �nite Galois quotients of the Galois group,{
G[L/K ] : L ∈ F

}
. One can then obtain F from F by F =

⋃
L∈F

K (L). Likewise,

the Galois group can be obtained from G[F/K ]/H by G[F/K ] = lim
←−−
L∈F

G[L/K ]. It

thus serves reason to examine the �nite groups in the inverse limit that de�nes

G[F/K ]. Since the primes in the order of a �nite group play a large role in its

structure, one needs to rede�ne the order G[F/K ] in such a way that the primes

that divide the orders of the �nite Galois quotients of G[F/K ] can be explic-

itly found within the order of G[F/K ]. Thus enters the so called supernatural

numbers.

De�nition. A supernatural number is a formal product of the form n =
∏

p prime
pn(p)

where n(p) is either a non-negative integer or ∞. If n and m are two supernatural

numbers, then n | m if n(p) ≤ m(p) for each prime p. For any family of natural

numbers {ni}i∈I , we de�ne the following:

• product:
∏
i∈I

ni =
∏

p prime
pn(p) where n(p) =

∑
i∈I

ni (p);
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• greatest common divisor: gcd(ni)i∈I =
∏

p prime
pn(p) where n(p) = min {ni (p)}i∈I ;

• least common multiple: lcm(ni)i∈I =
∏

p prime
pn(p) where n(p) = max {ni (p)}i∈I .

Note. Let p be a prime. We give a clearer de�nition of the minimum and maximum

operations used above. De�ne the set J by
{
n j (p)

}
j∈J
= {ni (p) : i ∈ I, ni (p) < ∞}.

If J is nonempty, then min {ni (p)}i∈I = min
{
n j (p)

}
j∈J

which always exists and is

a non-negative integer. If J is empty, then min {ni (p)}i∈I = ∞. Likewise, if I − J

is nonempty, then max {ni (p)}i∈I = ∞. If J = I, then max {ni (p)}i∈I either exists

and is a non-negative integer or does not exist in which case we de�ne it to be ∞.

Let G be the Galois group of an algebraic Galois extension F/K . For any closed

subgroup H < G, we rede�ne the index of H in G as the supernatural number

[G : H] = lcm
{
[G[F/K ]/G[F/L] : HG[F/L]/G[F/L]] : L ∈ F

}
. This is well de-

�ned because HG[F/L] is a subgroup of G[F/K ] by the normality of G[F/L] and

G[F/K ]/G[F/L] � G[L/K ] is a �nite group. In particular, we identify the order

of G as |G | = [G : 1] = lcm
{
|G[L/K ]| : L ∈ F

}
. For convenience, we consider

G a pro�nite group. A pro-p group, p prime, is a pro�nite group in which the

inverse system consists of p-groups. Recall that a Sylow p-subgroup of a �nite

group G is a subgroup H that has order a power of p and |G/H | is not divisible

by p. Likewise, for a pro�nite group G, a Sylow p-subgroup is a closed subgroup

H such that H is a pro-p group and [G : H] is not divisble by p. The intention

here is to present a structure theorem for pro�nite groups analogous to the Sylow

theorems for �nite groups. We thus have the following theorem.

Theorem 43. (Sylow Theorem) Let (Gi, ϕi j )i, j∈I be a surjective inverse system of

�nite groups and p a prime. Let G be the pro�nite group lim
←−−

Gi. Then,

(1) G contains a Sylow p-subgroup;

(2) Any pro-p subgroup is contained in a Sylow p-subgroup of G;

(3) Any two Sylow p-subgroups of G are conjugate.
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Proof. (1) De�ne Pi as the set of all Sylow p-subgroups of Gi for each i ∈ I. Note

that each Pi is nonempty. Let i, j ∈ I with i ≤ j. Since Gi � G j/ker ϕi j and each

Sylow p-subgroup of G j/ker ϕi j is of the form Pker ϕi j/ker ϕi j with P a Sylow

p-subgroup of G j , then, for each P ∈ Pj , ϕi j (P) ∈ Pi. Thus, we may de�ne the

mapping ϕ̃i j : Pj → Pi by P 7→ ϕi j (P). Hence, (Pi, ϕ̃i j )i, j∈I is an inverse system of

nonempty �nite sets so that lim
←−−
Pi is nonempty by Lemma 34. Let (Pi)i∈I ∈ lim

←−−
Pi.

Then (Pi, ϕi j )i, j∈I is an inverse system of �nite groups so that lim
←−−

Pi is easily seen

to be a Sylow p-subgroup of G.

(2) Let H be a pro-p subgroup of G. Then πi (H) is a p-subgroup of Gi for

each i ∈ I. De�ne Pi to be the nonempty collection of Sylow p-subgroups of

Gi containing πi (H). Construct P = lim
←−−

Pi where (Pi)i∈I ∈ lim
←−−
Pi as in previous

paragraph so that P is a Sylow p-subgroup of G containing H.

(3) Let H and K be two Sylow p-subgroups of G. De�ne Ci = {c ∈ G :

cπi (H)c−1

= πi (K )}. Since πi (H) and πi (K ) are Sylow p-subgroups of Gi for each i ∈ I, then

each Ci is nonempty. Let i, j ∈ I with i ≤ j. Also, let ci ∈ ϕi j (Cj ) and c j ∈ Cj be

such that ϕi j (c j ) = ci. Then ciπi (H)c−1i = ϕi j (c jπ j (H)c−1j ) = ϕi jπ j (K ) = πi (H) so

that ϕi j (Cj ) ⊂ Ci whence (Ci, ϕi j )i, j∈I is an inverse system of nonempty �nite sets.

Lemma 34 implies that lim
←−−

Ci is nonempty so let c ∈ lim
←−−

Ci. Then πi (cHc−1) =

πi (c)πi (H)πi (c)−1 = πi (K ) for each i ∈ I so that cHc−1 = K . �

As is immediately clear from the Sylow theorems, pro�nite groups made up of

�nite p− groups play an important role in the overall structure of Galois groups.

Thus, we present the following example.

Example 44. Let p and q be distinct primes. For each n ∈ N, denote Fqpn as the

unique extension of Fq as a splitting �eld of xqpn

− x. The Galois group of each

intermediate extension Fqpn /Fq is therefore the cyclic group Z/pnZ. Therefore,

Lemma 28 implies that G = G
[ ⋃

n∈N
Fqpn /Fq

]
is a subgroup of

∏
n∈N
Z/pnZ. The pre-

cise subspace is found by analyzing the compatibility of the projection mappings
28



Z/pnZ→ Z/pmZ for all m < n. Thus, any transformation in Z/pnZ that permutes

elements that are roots of xqpm

− x must be compatible with the corresponding

element in Z/pmZ under the projection mapping. Algebraically, this implies that

G =
⋂

n∈N

{
(αi) ∈

∏
i∈N
Z/piZ : αm ≡ αn mod pm ∀m < n

}
. Thus, G = Zp, the p−adic

integers.

Thus, we see that the structure of Galois groups of in�nite Galois extensions

depend directly on their �nite quotients as is explicitly stated in 38. In fact,

in�nite Galois groups share much of the same topological and group structure as

�nite groups as seen in Theorem 29 and Theorem 43.
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Chapter IV

A Discussion of Galois Theories Present in Modern Mathematics
5

One explicit application of Galois theory is in algebraic number theory where

the fundamental object of research is number �elds which are �nite algebraic

extensions of Q. These extensions are not always Galois, but they of course

are not far away from being splitting �elds. Often enough, one works explicitly

with Galois number �elds. For example, a topic of great importance in algebraic

number theory is class �eld theory which is the study of �nite Abelian extensions

of number �elds. An Abelian extension is an algebraic Galois extension such that

the corresponding Galois group is Abelian. An example of such is the algebraic

function �eld of elliptic curves over �nite �elds. Another example in algebraic

number theory is when one considers unique factorization in rings of integral

elements of a number �eld. It is known that rings of integers are Dedekind

domains, that is, integral domains such that every proper ideal has a unique

factorization into prime ideals. However, rings of integers are not in general

unique factorization domains. Regardless, Galois theory aids in calculating the

prime ideal factorization as follows: when an extension of number �elds F/K

is Galois, the Galois group G[F/K ] acts transitively on the prime ideals of OF ,

the ring of integral elements in F, that are generated by prime ideals in OK ,

the ring of integral elements in K , and therefore gives insight into what is called

the rami�cation of the extension which corresponds to the multiplicity of the

prime ideals in the factorization of any such ideal. For local �elds, one considers

extensions of the p − adic numbers in which case rami�cation quanti�es how far

an automorphism in G[F/K ] sends an integral element under the p− adic metric.

An analog of Galois theory can be found in algebraic topology, namely in

certain considerations of covering spaces. Let X be a locally path connected

5For a reference to algebraic number theory topics, see [5]. For a reference to covering spaces,
see [2]. For a reference to locally compact groups, see [4].
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topological space and π1(X ) its fundamental group. Then there is a bijective

correspondence between the conjugacy classes6 of π1(X ) and all connected covers.

Given a covering p : C → X , a homeomorphism ϕ of C is a deck transformation

if pϕ = p. The set of deck transformations, denoted Aut(p), forms a group and is

connected to the Galois theory of covering spaces as follows. A covering is called

Galois (or regular) if the corresponding subgroup of π1(X ) is normal in which

case the quotient group is isomorphic to the group of deck transformations of the

given cover. Furthermore, a covering can be seen to be Galois if its group of deck

transformations acts transitively on some �ber in which case it acts transitively on

all �bers of the covering. In this case, if Aut(p) is �nite, then the order of Aut(p)

is the order of each �ber. The universal cover X̃ of X is a simply connected

covering of X .7 X̃ can be classi�ed in a number of ways, one of which is the

covering corresponding to the trivial subgroup of π1(X ). Obviously the group

of deck transformations of the covering X̃ → X is isomorphic to π1(X ). For

example, the fundamental group of S1 can be calculated by considering the deck

transformations of the universal covering p : R → S1 de�ned by r 7→ e2πir which

is clearly Z.

Let G be any compact group and denote the connected component of 1 ∈ G

by G0. Then since G0 is also connected and gG0g−1 � G0 for each g ∈ G, G0 is

a closed normal subgroup of G and G/G0 is a totally disconnected group. It is

easy to see that both G0 and G/G0 are also compact. Thus, 36 says that G/G0 is

pro�nite. Further, we have a short exact sequence 0→ G0 → G → G/G0 → 0. G

may therefore be viewed as an extension of a pro�nite group G/G0 by a connected

compact group G0. Conversely, given a short exact sequence 0 → K → G →

H → 0 where K is connected and H is totally disconnected, then K � G0 and

H � G/G0. The Gleason-Yamabe Theorem essentially says that for any compact

6The bijection concerns conjugacy classes instead of subgroups due to the dependence of base
point.
7Letting X be semilocally simply connected is one way to ensure existence of the universal cover.
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normal subgroup N of G0, G0/N is a Lie group. In particular, if G, or just G0 is

also Hausdor�, then G0 is an inverse limit of Lie groups; this applies especially to

G/G0, but these Lie groups are necessarily �nite so that G/G0 is indeed pro�nite

as already stated. This justi�es studying connected compact groups and pro�nite

groups in the more general study of compact groups. One may even extend this

to locally compact groups. In fact, if a group G is locally compact, Hausdor�,

�rst countable, and �nite dimensional with respect to embeddings of open subsets

of Rn or some generalization thereof, then G is locally isomorphic to the direct

product of a Lie group and a pro�nite group as in the compact case.
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Appendix

Proof. (van Dantzig's Theorem) Let G be a totally disconnected locally compact

topological group. Firstly, we sketch out a proof that the set of all closed-open

subsets of G forms a basis. Indeed, G need not be a group for this claim. Suppose

that G is compact. Let g ∈ G and H the intersection of all closed-open sets

containing g. Using compactness, show that H is connected. G being totally

disconnected then implies that H = {g}. Therefore, for any h, k ∈ G, there are

disjoint closed-open sets H and K containing h and k respectively. Let N be a

neighborhood of g. Using the compactness of G and the fact that closed-open sets

separate points in G, construct a closed-open set contained in N that contains

g. If G is not compact, let H be a compact neighborhood of g. Construct an

open neighborhood K of g contained in H such that K is disjoint from ∂H. Use

previous discussion to obtain a basis of closed-open sets contained in K .

Note that G is necessarily Hausdor�. Proceed to show that every compact open

neighborhood of 1 contains a compact open subgroup using the continuity of the

binary operation mapping along with compactness and the Hausdor� property.

Apply the propositions given in preceding paragraph to conclude the proof. �
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