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ABSTRACT

This paper uses recently developed Bayesian techniques in the analysis of stochastic bubbles in the

USD-JPY exchange rate. After the fundamental value of the price series is removed, the exchange

rate is subject to two regimes. The first regime follows a mean-reverting process around a long-

term moving average. The second regime is an autoregressive process with an explosive root. The

SMC2 particle filter jointly estimates the hidden state and model parameters in real time. This

method can readily deal with changes in market behavior and provides a measure of parameter

uncertainty. Significant evidence of bubbles in the USD-JPY exchange rate were found. Furthermore,

two trading strategies are devised and tested. Both strategies produce higher Sharpe ratios than a

directional-trading benchmark.
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1. Introduction

Since the global switch to floating exchange rates in the early 1970s, many econometric

researchers have looked for evidence of speculative bubbles in currency markets. The literature is

inconclusive; some researchers find evidence of speculative bubbles while others report no evidence.

Recent developments in time series analysis have produced powerful bubble-detection methods,

leading to a new wave of bubble-stamping research. Most of the new research focuses on stock

markets, which are known to have periods of rampant speculation. Among the newly-discovered

methods of bubble-detection is the use of Particle Filters to identify bubbles in real time. The

following paper takes this recent and powerful method of analyzing markets and applies it to foreign

exchange rates.

The research on bubble-detection in stock markets has included the application of quan-

titative bubble-stamping methods in trading strategies. Such research is lacking for currencies. If

exchange rates are floating, then they are susceptible to speculation, and so bubble-trading strategies

may be feasible. This research investigates the existence of speculative bubbles, then attempts to

devise an algorithmic trading strategy based on that evidence.

The detection of speculative bubbles is important to central banks as well; the raison d’etre

of central banks is to regulate the value of the domestic currency, both to benefit international trade

and to control inflation. As currency trading is buying one currency while selling another, explosive

behavior in an exchange rate can have drastic effects on international trade agreements and may even

lead to hyperinflation. The impact of exchange rate bubbles on global industry is also of importance.

Many businesses have interests in countries with different currencies; the trend in globalization makes

this research ever more meaningful.
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This paper is organized as follows:

• Chapter 2 is a literature review featuring in-depth discussion of the evidence for and against

the existence of speculative bubbles in exchange rates, as well as the economic and mathematical

basis for the proposed bubble-detection model.

• Chapter 3 is an explanation of the mathemetical and economic methods used in the detection

model and the creation of the simulated test-data series.

• Chapter 4 includes a presentation of the results of the particle-filter on both real and simulated

data.

• Chapter 5 contains a description and evalution of a real-time FOREX trading strategy based

on the bubble-detection model.
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II. Literature Review

The econometric literature surrounding bubbles, both in theoretical and empirical bubble-

stamping methods, is vast and deep, going back at least to the early 1980s and covering every asset

class and many economic indicators. The literature is mixed; while most economists agree that

bubbles in stock prices and commodities exist, the evidence for bubbles in exchange rates is much

less clear. While testing for exchange-rate bubbles was a hot topic in the late 20th century, the idea

seeems to have cooled off significantly since then. New advances in bubble-stamping techniques and

recent leaps forward in computing power have made bubble-detection once again an area of interest

to econometricians, and searching for bubbles in exchange rates should be part of that research.

Since the abandonment of the Bretton-Woods system, which kept exchange rates tied to

the price of gold through the U.S. dollar, exchange rates have been controlled by currency markets.

Currency is bought and sold, like a commodity or a stock; currency can be thought of as an asset. It

makes intuitive sense, then, to expect currencies to act like other assets.

The major difference between a currency and any other asset is the role of central banks.

The stablity of the value of money is important to the economic stability of the country in which

that currency is used, and so the main goal of central banks is to stabilize the value of their currency.

The relative strength of a currency is connected to the domestic interest rate, and the manipulation

of interest rates is a powerful tool of central banks. The presence of an entity with the power and

mission to keep the exchange rate within a certain interval might make speculative bubbles rare or

perhaps even impossible.
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This chapter proceeds with a discussion of fundamental-pricing models for currencies and

research in which those models were used to search for bubbles in currency prices. Then, the

discussion will turn toward technical discussion of Sequential Monte Carlo (SMC) methods, also

known as particle filters.

Economic Literature

An early example of a possible bubble in currency value is in the Weimar Republic in the

early 1920s. Flood and Garber (1980) investigated this period using the classical Cagan model of

currency value fundamentals. They wrote, “The possibility of a market’s launching itself into a price

bubble exists when the expected rate of market price change is an important factor determining current

market price” (Flood & Garber, 1980), implying that anticipations influence market fundamentals.

The study found evidence of a hyperinflationary bubble, but the authors are careful to say that this

evidence is subject to model error. However, “if bubbles actually exist, then explaining both their

paths and their terminations is important, and dynamic models which ignore bubbles are clearly

inadequate” (Flood & Garber, 1980).

Flood and Garber and Scott (1984) compared price levels across Germany, Poland, and

Hungary during the early 1920s in an investigation of possible simultaneous bubbles across the three

closely-linked countries. In this study, they found no evidence of hyperinflation in Poland and no

evidence of a bubble common to any combination of the three countries (Flood et al, 1984).

Okina (1984) provides an overview of several exchange-rate value models that became

popular in bubble-stamping research. While none of the theoretical models have been shown to

be empirically accurate, the common explanation of bubbles is as significant deviations from the

fundamental value. Okina’s (1984) paper outlines what are known as the Monetary Model, the

Overshooting Monetary Model, and the Portfolio Balance Model. The focus in this thesis is on the

Monetary Model, which is explained in Chapter 3. Okina (1984) also outlines three mathematical

forms of bubbles: Stochastic bubbles with no regeneration; stochastic bubbles with regeneration; and

deterministic bubbles.
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The study by Charemza (1996) is based on the theory that the fundamental relative value

of a currency is proportional to the expected value of the future relative price of that currency plus

monthly domestic inflation plus some measure of uncertainty.

pt = ϕ0Et(pt+1 + ϕ1πt+1 + ϕ2vt+1) + et

There is weak evidence that there was a speculative bubble in Poland in the late 1980s, and that the

collapse of this bubble caused exchange-rate instability in the Zloty (Charemza, 1996).

An interesting perspective, taken by Kiman, Ricciotti, and Topol (2007), for analyzing

exchange rates is to consider the rate as entirely set by investors with a profit motive. They simulate

foreign and domestic traders as either chartists or fundamental-value traders. The model was flexible

enough to adequately describe complex market fluctuations, but is heavily affected by exogenous

parameters and thus prone to specification error (Kiman et al., 2007).

Many of the popular fundamental-price models for exchange rates are compared in Macerin-

skiene and Balciunas (2013), who list the advantages and disadvantages of each from a theoretical

perspective. It is widely agreed that purchasing power parity (PPP) does not hold, at least in the

short term, and so any models that rely on the assumptions of PPP must necessarily be inaccurate in

the short term. Similarly, the assumption of interest-rate parity (IRP) is thought to be problematic

due to the heterogeneity of risk attitudes among investors and models that rely on IRP are also

expected to be inaccurate. Unfortunately, most available fundamental-price models for exchange

rates rely on at least one of these two assumptions. The compared model that is closest to the

Monetary model used in this thesis is the Flexible Price Monetary Model. The major advantage to

this model is that is is one of the few that include the impact of monetary policy on exchange rates

(Macerinskiene & Balciunas, 2013). The drawback to this class of models is that they rely on both

PPP and IRP, and thus do not explain all exchange rate movements. However, this paper supposes

that the unexplained movements are the product of speculative bubbles that are additively separate

from the fundamental rate, and so a lack of fit with the fundamental model is expected.

The Portfolio Balance Model from Okina (1984) is used by Woo (1987). The stochastic-

bubble model accounts for fiscal and monetary policy-making that attempts to keep inflation within
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a target zone. This leads to the conclusion that non-fundamental values should be either stationary

or explosive. The paper shows that the model fits the DEU/USD and FRA/USD exchange rates

quite well, but additional assumptions were needed to fit the model to the JPY/USD data. There

was strong evidence of bubbles in each of these; the longest bubble period was from June to October

1978, in DEU/USD (Woo, 1987).

Wu (1995) also tested DEU/USD and JPY/USD for bubbles during the same period, but

found no evidence. The fundamental value in the exchange rate is determined by a monetary model,

rather than the portfolio balance model. After finding no evidence of bubbles, the author speculates

that the Kalman filter model may suffer from accumulated error and parameter uncertainty; however,

Wu (1995) also argues that accumulated error would increase the standard error and make the

coefficient of interest appear even less statistically significant.

The Kalman filter approach is used regularly in finance, and research featuring its application

to econometric time series is abundant. It used in both Al-Anaswah and Wilfling (2011) and Chen

and Yan (2011) to search for bubbles in stock markets. Both studies look for bubbles in the U.S.

stock market; Al-Anaswah and Wilfling (2011) also test the Brazilian stock market; Chen and Yan

(2011) also test the Shanghai stock exchange. The difference between these two Kalman-filtering

approaches and that used by Wu (1995) is the inclusion of Markov-switching.

The empirical analysis of Al-Anaswah and Wilfling (2011) finds strong evidence of bubbles.

They also find that the probability of bubble survival is significantly higher than the probability of

bubble collapse, indicating that bubbles are expected to continue. The Kalman-filter with Markov-

switching method is able to correctly identify the Great Depression and the recession at the beginning

of the second world war, but it smoothes over Black Monday, the dot-com bubble, and the oil crisis.

The study also reports evidence of the Brazilian stock market crash in the late 1990s and a crash in

the Asian stock market as shown in Japanese and Malaysian stock indices (Al-Anaswah & Wilfling,

2011).

Chen and Yan (2011) report similar findings in the U.S. stock market. They also found

significant evidence of bubbles in China from the summer of 1992 to the summer of 1993, in October
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1994, through the second half of 1999, and toward the end of 2008 (Chen & Yan, 2011). It is

interesting to note that much of the globe was in a recession in 2008, the Subprime Mortgage Crisis,

due to the collapse of an enormous housing bubble in the United States.

The Kalman filter was used again to detect bubbles in the U.S. stock market in the master’s

thesis by Hrabovska (2017). The same technique used by Chen and Yan (2011) and Al-Anaswah and

Wilfling (2011) is applied not only to the S&P 500 index but also to 17 large American companies.

The analysis finds that the S&P 500 has been constantly overvalued since the 1980s; the bubble

component has been positive for the last 40 years. Stock prices of individual companies, however,

display much more noise. The only two crashes at the company level were at Wells Fargo and Abbott

Laboratories in 2012 and 2004, respectively (Hrabovska, 2017).

More recently, the PSY bubble-stamping method, developed by Phillips, Shi, and Yu (2011),

has received a lot of attention from economists of all kinds. The method is a recursive application

of the Augmented Dickey-Fuller test that uses the supremum of ADF test statistics over each time

period to determine if there is a bubble in that period. This is the test used by Bettendorf and Chen

(2013) to analyze bubbles in the Sterling-Dollar exchange rate. This study revealed evidence of a

bubble in 1976, corresponding to the well-known Sterling Crisis, and in 1985, when the U.S. dollar

was appreciating quickly against many currencies.

The PSY method has been used to detect negative financial bubbles as well, where the

asset price is below the fundamental value, in oil companies in 2014/15 by Fantazzini (2016). The

stock prices of West Texas Intermediate and Brent Crude were analyzed using both PSY and the

log-periodic power law (LPPL) devised by Yan et al. (2012). When daily prices from January 2013

to April 2015 were examined, both methods stamped bubbles in both time series. The analysis was

then applied to weekly data from 2002 through 2015, and the same bubbles were stamped again,

further emphasizing the evidence of negative bubbles. However, the author notes that PSY results

are quite sensitive to the user-input minimum bubble length (Fantazzini, 2016).

Milunovich, Shi, and Tan (2019) brought PSY into the world of trading, using the bubble-

detection method to devise a bubble-trading strategy. To implement a bubble-based portfolio
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management technique, the authors focus on sector indices which display less statistical noise than

individual stocks. The use of weekly, rather than daily, data allows the strategy to avoid stochastic

jumps and the associated discontinuity. The basic strategy is that a trader buys the sector index

when a bubble is detected, sells the index when a collapse is detected, and otherwise buys short-term

treasury bills. In addition to considering the PSY bubble-detection indicator alone, Milunovich et

al. consider a modified indicator which requires the market index to have a positive most recent

change as well. They call this indicator PSY-MBI. They compare the PSY-Base and PSY-MBI

strategies to a simple directional strategy which executes trades according to the direction of the

most recent return and benchmark all strategies to the buy-and-hold strategy. “The buy-and-hold

strategy is difficult to surpass, especially when transaction costs are taken into consideration, and

therefore serves as a powerful benchmark” (Milunovich, Shi, & Tan, 2019). Round-trip transaction

costs of 0.5% are assumed.

The PSY-MBI far outperforms the others. With the optimal 99% confidence level, the final

wealth of the PSY-MBI strategy is over thrice the final wealth of PSY-Base, and the Sharpe ratio

is approximately 2 percentage points higher. Both PSY strategies outperform buy-and-hold, and

the directional strategy loses all equity. Bubbles are detected in all eleven sectors (Milunovich et al.,

2019).

The final bubble-stamping strategy to be discussed, and the strategy used in this research,

is particle-filter analysis. The methodology in this thesis closely resembles the methodology of Fulop

and Yu (2017), who compare the SMC2 particle filter with the PSY method for bubble detection in

the S&P 500. The filter itself is described in detail in Chapter 3, and will be discussed in detail later

in this chapter. The next few paragraphs discuss the econometric results of the implementation.

The time series used in Fulop and Yu (2017) is the price-dividend ratio of the S&P 500 as

collected by Robert Shiller. According to the present-value model of fundamentals, if the log-divdends

dt is an I(1) process, then the fundamentals ft must be I(1) as well. This has two implications:

• If there is no bubble, then the log-price function pt = ft + bt implies pt = ft, and so the price

must be I(1).
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• If there is an explosive bubble, then pt − ft = bt implies that pt must be explosive, and so must

pt − dt, which is the log-price-dividend ratio.

The reliability of the algorithm was tested by Monte Carlo methods; 100 datasets were

simulated from the proposed regime-switching model, each with 1698 observations. Then, the

particle filter was run on these simulated data series with M = 2048 θ-particles and N = 128 state-

particles(Fulop & Yu, 2017). The results of the test showed significant tightening of the confidence

intervals for parameters, with all true parameters falling within the 90% confidence interval of the

posterior mean (Fulop & Yu, 2017).

Fulop and Yu (2017) used a loss function to determine when bubbles should be stamped.

The loss function is the ratio of the bubble-probability to the non-bubble probability, and if this

ratio surpasses a chosen level ζ the period is stamped. In the Monte Carlo analysis, ζ = 1 led

to overestimation of bubble periods and the particle filter performed worse than PSY. However,

with ζ = 2, the SMC2 method stamped closest to the known number of bubbles despite slightly

understimating the number of bubbles. Neither PSY nor SMC2 accurately stamped the correct total

bubble length, and both methods underestimated the average bubble duration (Fulop and Yu, 2017).

On the real S&P 500 data, the confidence intervals for the parameters tightened over the

course of analysis. The algorithm returned high estimates for the probability of regime persistence,

with the expected length of a normal regime near 147 months and the expected length of the bubble

regime at 31 months. The Markov-switching probabilities for volatility regimes were similar. With

ζ = 2, a total of 24 bubbles were found in the S&P 500 from 1874-2015, with an average bubble

length of 9.7 months. These included the banking crisis in October 1907, the crash which started the

Great Depression in September 1929, Black Monday in October 1987, the DotCom crash in Match

2000, and the subprime mortgage crisis in 2008. Importantly, the particle filter is prone to interpret

post-crash rebounds as new bubbles (Fulop and Yu, 2017).
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Particle-Filter Literature

Particle filters, also called Sequential Monte Carlo (SMC) methods, are sampling-based

techniques for approximating posterior distributions, often in the context of Hidden Markov Models

(HMMs). SMC methods can approximate posterior distributions in far more complex HMMs (Doucet,

de Freitas, & Gordon, 2001). “All [particle filters] approach the filtering problem from a sampling

perspective, with the aim being to generate a random sample from the true posterior distribution”

(Fearnhead, 1998). A very basic SMC algorithm, given by Doucet, de Freitas, and Gordon (2001), is

comprised of these two steps:

• Assume that yt is the oberved measurement at time t and xt is the hidden state at time t.

• Prediction Step:

P (xt|y1:t−1) =
∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1

• Updating Step:

P (xt|y1:t) = p(yt|xt)p(xt|y1:t−1)∫
p(yt|xt)p(xt|y1:t−1)dxt

The integrals involved are generally intactible and have to be approximated (Fearnhead, 1998;

Andrieu, Doucet, & Punskaya, 2001). There are many similar algorithms, and a few will be discussed

here.

The main benefit of SMC rather than traditional Monte Carlo (MC) methods is that new

observations can be added without the need to recalculate the entire approximation; they are less

computationally expensive than batch methods when continuous measures are taken. The downside,

however, is that error accumulates with each additional measurement. Therefore, SMC methods are

expected to degenerate over time. Andrieu, Doucet, and Punskaya (2001) conclude that the number

of particles must grow as more measurements are observed, but Fearnhead (1998), in his doctoral

dissertation, argues that this degeneration can be postponed, if not avoided, by the purposeful

selection of investigated states. “A few well chosen points will give a better estimate than a much

larger number of points chosen at random” (Fearnhead, 1998). In fact, when there are only a small

number of possible values for the hidden state, the best estimate can be found by propagating the

particles through every possible state. If there are S possible states, then this method would increase
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the number of particles by a factor of S at each measurement and the algorithm would quickly

become too computationally expensive for even the most powerful computers; therefore, the original

number of particles N should be resampled from the SN particles according to normalized weights

after posterior probabilities are calculated at each timestep (Fearnhead, 1998; Fulop & Yu, 2017).

This is known as the Discrete Particle Filter (DPF).

Commonly, the probability distributions required for the update step are either not known

or are too complex to be sampled from efficiently. The usual way to overcome this problem is with

the use of Importance Sampling (IS). In IS, a simpler distribution is chosen to represent the true

target and samples are selected from this new distribution, then weighted according to the target

distribution. For this to work, every possible non-zero value under the target distribution must have

a non-zero probability under the importance distribution. While particle filters using IS have been

proven convergent, approximations based on importance sampling are biased, and get more and

more skewed over time (Doucet et al., 2001). For Sequential Importance Sampling (SIS) methods to

be efficient, particle weights should be close to uniform. When weights are skewed, particles with

high weights are resampled too often and the sample will be depleted; however, the sample can be

regenerated using Markov-chain Monte Carlo (MCMC) methods (Andrieu et al., 2001). Berquini and

Gilks (2001) describe a techinque for regenerating the set of particles using the Metropolis-Hastings

(MH) algorithm, a common MCMC method. An occasional MH update, reviewing the entirety of

the time series up to time t, redisperses the particles and allows them to adapt to evolution in the

target distribution (Berquini & Gilks, 2001). This can allow an otherwise degenerative particle filter

to become ergodic (Andrieu et al., 2001), especially when the hidden state involves multiple models,

like the system in this thesis.

“In applications involving multiple models, the particles are scattered in a complex

parameter space, which is the union of model-specific sub-spaces. In this context, a merit

of the hybrid particle filters . . . is that they allow particles to jump from one model

subspace to another. This may be useful to recover from occasional depletion of some

subspaces, and moreover, in those applications involving nested models, to take advantage
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of relationships between parameters of differenct subspaces” (Berquini & Gilks, 2001).

When a system being analyzed is non-trivially dependent on the set of parameters, θ, the asymptotic

behavior of SMC methods can vary widely (Andrieu et al., 2001). Methods for accurately estimating

parameters can have a large effect on the outcome of the particle filter as a whole. Until 2010,

most of the literature relied on Maximum Likelihood Estimates (MLE) of the parameters, as it

is computationally easier and more natural than Bayesian estimation (Svensson & Schon, 2016).

However, the accuracy of MLE depends on the sample size from which estimates are calculated, and

so sequential estimation is typically inaccurate or impossible.

A major breakthrough that had a tremendous impact on parameter-estimation techniques

in particle filters is the work of Andrieu, Doucet, and Holenstein (2010) in which they describe a

sequential adaptation of MCMC methods, dubbed Particle Markov-chain Monte Carlo (PMCMC)

methods. “[PMCMC] methods rely on a non-trivial and non-standard combination of MCMC and

SMC methods which takes advantage of the strength of its two components” (Andrieu et al., 2010).

They offer particle-filter versions of the Marginal Metropolis-Hastings sampler, the Independent

Metropolis-Hastings sampler, and the Gibbs sampler. Of importance to this paper is the Particle

Marginal Metropolis-Hastings (PMMH) sampler, and it is the only PMCMC method that will be

discussed here.

The intuition behind the PMMH sampler is to use the Bayesian decomposition

p(θ, x1:T |y1:T ) = p(θ|y1:T )pθ(x1:T |y1:T ) to draw a sample from the joint distribution of states and

parameters. The traditional MH sampler compares the likelihood of two importance-sampled sets of

states and accepts the most likely, repeating until convergence. The PMMH sampler compares the

likelihoods of two particles up to time T under the importance distribution q:

q ({θ∗, x∗1:T }|{θ, x1:T }) = q(θ∗|θ)pθ∗(x∗1:T |y1:T )

When x∗1:T is perfectly adapted to θ∗, the only degree of freedom of the proposed distribution that

affects performance is the choice of q(θ∗|θ) (Andrieu et al., 2010). The acceptance distribution for

the MH part of the PMMH sampler is the ratio of marginal-likelihoods of the particles times the
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importance likelihoods:

p(θ∗, x∗1:T |y1:T )q ({θ, x1:T }|{θ∗, x∗1:T })
p(θ, x1:T |y1:T )q ({θ∗, x∗1:T }|{θ, x1:T })

This complex ratio can be decomposed and simplified to:

pθ∗(y1:T )p(θ∗)q(θ|θ∗)
pθ(y1:T )p(θ)q(θ∗|θ)

And when the importance sampling distribution q is symmetric, this can be further simplified

to:

pθ∗(y1:T )p(θ∗)
pθ(y1:T )p(θ)

Which is just the marginal likelihood of y1:T under each set of parameters and the prior marginal

likelihood of that set of parameters. This final form of the MH acceptance ratio shows that the

target of the PMMH sampler is in fact p(θ|y1:T ) ∝ pθ(y1:T )p(θ), and so the algorithm will converge

to the marginal distribution of θ just like a traditional MH sampler would (Andrieu et al., 2010).

The particle part of PMMH is the use of particle-filter approximations for pθ(y1:T ) in the acceptance

ratio. The algorithm for this sampler is shown in detail in Chapter 3.

PMCMC methods create unbiased estimates of the target distribution and are ergodic

under weak assumptions (Andrieu et al, 2010), but can be computationally expensive and are not

suitable to on-line analysis. They also have an initial transient period where estimates vary widely

and are typically quite inaccurate. One thought on how to avoid this problem is to discard the first

n estimates; this is not a solution, as there is no way to tell how long the “burn-in” period will be

and therefore no way to tell if too many or too few of the estimates have been discarded (Svensson &

Schon, 2016). Causing further problems, once PMCMC algorithms get past the intial transience they

often get stuck; they explore one small area of the possible space and reject all proposals (Svensson

& Schon, 2016).

Despite the drawbacks of the PMMH sampler, it is this algorithm that makes sequential

joint Monte Carlo estimation of states and parameters possible in the algorithm known as SMC2,

concurrently devised by Fulop and Li (2013) and Chopin, Jacob, and Papaspiliopoulos (2013).

The name SMC2 is used by Chopin et al. but not by Fulop & Li; the algorithm requires both a
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parameter-learning filter and a nested state-learning particle filter, and that is the inspiration for the

name.

Fulop and Li (2013) call the algorithm “a marginalized resample-move approach,” which

is an appropriate and descriptive name. In order to update the Bayesian probability assigned to

each θ-particle, dependence between parameters and states is broken by marginalizing out the states.

Running a state-particle filter creates a set of auxiliary random variables; for instance, the particle

filter in this thesis creates variables that represent the length of time since the last regime change,

which are samples from a geometric distribution, and it is these variables that are used to reweight

the θ-particles.

The resample-move portion of SMC2 is quite similar to the resample-move sample-

rejuvenation technique proposed by Berquini & Gilks (2001). Berquini and Gilks (2001) recommend

a MH sampler as a way to replenish a particle filter with degenerating sample size, and in SMC2

this idea is done sequentially via PMMH (Chopin et al., 2013; Fulop & Li, 2013; Andrieu et al.,

2010). As the purpose of the resample-move step is to replenish the ESS, it is not needed at every

timestep. Rather, it is recommended only when ESS<B, where B is set by the user. Fulop and

Li (2013) recommend B = M
2 , or half the total sample size, as it balances the need for continued

parameter-learning with the computationally demanding PMMH update.

Like other SMC algorithms, SMC2 has a tendency to degenerate over a large number of

observations. This degeneracy is slowed by the resample-move step; the PMMH update is needed

less often over time, but it also becomes much more demanding. Chopin et al. (2013) discuss the

computation cost at length. “The SMC2 algorithm is memory intensive: up to iteration t, O(tMN)

variables have been generated and potentially must be carried forward to the next iteration” (Chopin

et al., 2013). Over time, the computation cost approaches O(Nt2); however, only the most recent

particles need to be kept and so, under specific strict conditions, the computation cost can be held

to O(MN) (Chopin et al., 2013).

Svensson and Schon (2016) compare SMC2 to PMMH. If K is the number of iterations,

T is the number of observations, and Nx is the number of particles, then the PMMH algorithm is
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governed by O(KTNx), but Nx can be optimally chosen so that the computation cost does not vary

with T , in which case the cost is governed by O(KT 2) (Svensson & Schon, 2016). Alternatively, the

computation cost of SMC2 is governed by O(KT 2NxNθ), or with Nx chosen to keep the acceptance

rate invariant with T , O(KT 3Nθ). Thus, although SMC2 can be used for on-line estimation, its

computation cost grows prohibitively fast with T and so is typically not usable in situations with

real-time requirements. In general, PMMH may be computationally advantageous with large T ,

while the two methods are comparable when T is not large; the advantage of SMC2 is that it offers

far more flexibility in tuning (Svensson & Schon, 2016).

Chopin et al. (2013) also compare SMC2 to other filtering algorithms, including PMMH.

They first argue that “even in batch estimation, SMC2 may offer several advantages over PMCMC,

in the same way that SMC approaches may be advantageous over MCMC methods” (Chopin et

al., 2013), and post-testing conclude that “SMC2 was shown typically to outperform competing

algorithms, whether in sequential scenarios (where data points are obtained sequentially) or in batch

scenarios” (Chopin et al., 2013). Specifically, SMC2 had smaller Monte Carlo error than other tested

filters when computation cost was held equal.

Fulop and Li (2013), in their paper proposing SMC2, run a Monte Carlo test for the

accuracy of the algorithm. They created a set of 100 simulated time series from a linear Gaussian

distribution (the exact states and parameters could be found by a Kalman filter) and ran SMC2

on the simulated data with a varying number of state-particles and θ-particles. With only 100

state-particles and 500 θ-particles, the algorithm obtained similar accuracy (measured by RMSE) to

an MCMC algorithm with 10,000 iterations (of which the first 4,000 were discarded for the “burn-in”

period). The algorithm is accurate even when with stochastic jumps and stochastic volatility in the

dataset (Fulop & Li, 2013).

The SMC2 algorithm, with Markov-switching, was chosen for this thesis because of its

flexibity and usability for on-line analysis. In the words of Chopin et al. (2013), “SMC2 is particularly

well suited to tackle several of the challenges that arise in the probabilistic modelling of financial

time series.”
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III. Methodology

Fundamental Model for the Exchange Rate

The time series of exchange rates cannot be input into the model directly; there may be

legitimate, non-speculative reasons for the exchange rate to behave explosively. Thus, the fundamental

value of the underlying asset must be removed from the exchange rate first. There are many ways to

derive a “fundamental” value, and in this paper the Small Country Monetary Model is selected due

to the ease of collecting the required data. This model was first proposed by Michael Mussa in 1980,

and is described in detail in Okina (1984).

The biggestshortcoming of this model is that it relies on the assumption of Purchasing Power

Parity (PPP), which is not empirically valid. Exchange rates often deviate from PPP significantly and

for extended periods. However, when discussing the fundamental relative-value of currencies, PPP

makes intuitive sense: Two currencies should have the same purchasing value, especially considering

the near-complete internationalization of most industries. The mathematical representation of

purchasing power parity is

P (t) = X(t)P ∗(t)

wherein P (t) is the domestic price level at time t, X(t) is the exchange rate at time t, and P ∗(t) is

the foreign price level at time t. Natural logarithms are used for the remainder of this section, to

allow algebraic manipulation of the variables; this is shown by lower-case letters.

p(t) = x(t) + p∗(t) (1)

i(t)− i∗(t) = Et[x(t+ 1)]− x(t) (2)

m(t) = p(t) + ay(t)− ki(t) (3)
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Equation 2 is the interest parity condition, which states that the ratio of interst rates

between two countries should be equal to the ratio of the expected future exchange rate to the present

exchange rate. This comes from the idea that an investor can purchase foreign currency in order to

gain the foreign interest rate on his or her holdings, if that interest rate is higher than the domestic

rate. The idea is used regularly by corporations to hedge investments in foreign countries.

• i(t) is the domestic interest rate at time t

• i∗(t) is the foreign interest rate at time t

• Et[x(t + 1)] is the expected future value of the exchange rate, given all of the information

available at time t

Equation 3 is the money market equilibrium condition, which describes the expected money

supply. The money supply is controlled by central banks, and is adjusted to encourage or discourage

spending and inflation. Essentially, this equation says that money supply should be determined by

the price level, times some proportion of income, divided by the interest rate times the interest rate

semi-elasticity.

• m(t) is the money supply at time t

• y(t) is real income at time t

• k is the interest rate semi-elasticity

The derivation of the fundamental value of the exchange rate can now proceed. Rearrange

Equation 2;

i(t) = Et[x(t+ 1)]− x(t) + i∗(t)

Substitute this into Equation 3;

m(t) = p(t) + ay(t)− k [Et[x(t+ 1)]− x(t) + i∗(t)]

Now rearrange this equation and distribute k;

m(t)− p(t)− ay(t) = −kEt[x(t+ 1)] + kx(t)− ki∗(t)

Get x(t) alone on one side;

m(t)− p(t)− ay(t) + ki∗(t) + kEt[x(t+ 1)] = kx(t)
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Now, rearrange Equation 1;

x(t) = p(t)− p∗(t)

And add this to both sides, p(t)− p∗(t) on the left, x(t) on the right;

m(t)− p∗(t)− ay(t) + ki∗(t) + kEt[x(t+ 1)] = (k + 1)x(t)

Divide by (k + 1) to get x(t) alone;

x(t) = k

k + 1Et[x(t+ 1)] + 1
k + 1 [m(t)− p∗(t)− ay(t) + ki∗(t)]

Finally, let z(t) = m(t)− p∗(t)− ay(t) + ki∗(t) and rewrite this equation as;

x(t) = k

k + 1Et[x(t+ 1)] + 1
k + 1z(t) (4)

This function falls into the Rational Expectations Asset Pricing Model

x(t) = aEt[x(t+ 1)] + bz(t)

wherein z(t) is the fundamental value of the asset, with a = k
k+1 and b = 1

k+1 . The idea that z(t) is

the fundamental value of this asset will be shown again. According to Okina (1984), the fundamental

value can be found by the series

x = b

∞∑
i=0

aiEt[z(t+ i)]

With a and b from Equation 4;

x = 1
k + 1

∞∑
i=0

(
k

k + 1

)i
Et[z(t+ i)]

Suppose z(t) has the martingale property, such that Et[z(t + i)] = z(t) , or that things

continue as they are;

x = 1
k + 1

∞∑
i=0

(
k

k + 1

)i
z(t)

Finally, include the convention 0 < k < 1 to find the geometric series;

x = z(t)
k + 1

∞∑
i=0

(
k

k + 1

)i
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The solution to the sum is;

∞∑
i=0

(
k

k + 1

)i
=
(

1
1− k

k+1

)(
k + 1
k + 1

)

= k + 1
k + 1− k

= k + 1

Thus, the final solution for the fundamental value is;

x = z(t)
k + 1(k + 1) = z(t)

Te settled fundamental value of the asset which must be removed from the exchange rate is

z(t) = m(t)− ay(t)− p∗(t) + ki∗(t).

Two Time Series

In a Dickey-Fuller test, the stationarity of a time series is determined by the presence of a

unit root. For example, in the following AR(1) model:

yt = ρyt−1 + ut

Taking the first difference:

yt − yt−1 = ρyt−1 − yt−1 + ut

A unit root, meaning ρ = 1, would leave only the noise term on the right side, making the time series

a random walk:

∆yt = ut

However, if the coefficient ρ is not equal to 1, the series would still have a yt−1 term on the right,

indicating that the change from one time-step to the next is dependent on the value of the series at

the previous time step. A coefficient less than one would leave a negative yt−1 term and is indicative

of a stationary time series. A coefficient greater than one leaves a positive term and indicates

explosive growth. In the literature, there are two main “types” of asset price movement, trended or

mean-reverting (Rockefeller, 2014). While unit root tests can be altered to allow for trend-stationarity,
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in the context of this paper the time series is classified as either mean-reverting or explosive. These

two models of series movement correspond to either the “normal” or the “bubble” regime, and the

probability of falling into one of these two regimes is the main focus of the state-particle filter. The

time series being analyzed is assumed to follow one of the two following models.

In the mean-reverting regime:

xt = αt(1− β1) + β1xt−1 + σtεt, β1 ≤ 1 (5)

In the bubble regime:

xt = β2xt−1 + σtεt, β2 > 1 (6)

These are the same process equations used by (Fulop & Yu, 2017). The parameters are

defined as follows:

• αt is the long-term mean to which the time series reverts. For the model in this paper, a moving

average is used. The window of the moving average is chosen by the researcher; it should be

long enough to smooth out the noise, but short enough to capture the natural movements of

the time series. Some common moving-average windows among technical traders are 20, 50,

100, and 200 time-steps.

• β1 is the coefficient of the previous value of the time series (ρ in the Dickey-Fuller example at

the beginning of this section). For a mean-reverting time series, this value must be less than or

equal to one. In the proposed model, this value is determined by the θ-particle filter described

later in this chapter.

• σt is the standard deviation of the noise term. Like the regime, this is allowed to take two

values, either a “high-volatility” or “low-volatility” value, and is present in the state-particle

filter. The two values are determined by the θ-particle filter described later in this chapter.

• εt is NID(0,1), and represents the random noise present in the time series

• β2 is the coefficient of the previous value of the time series for the bubble regime. Since the

bubble is defined by its explosivity, β2 must be greater than one. This value is determined by

the θ-particle filter described later in this chapter.
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Hidden Markov Model

The proposed model takes advantage of a Hidden Markov Model (HMM). As in all HMMs,

it is supposed that the observed time series is dependent on some unobservable series that is defined

to have the Markov property. In this model, the hidden time series contains only the discrete values

that identify the regime as either normal or bubble (st = 0 or st = 1, respectively) and the volatility

as either “low” or “high” (σ̂t = 0 or σ̂t = 1). For the volatility, σ̂t = 0 indicates that σt in the process

model should be σl, the low value of volatility, while σ̂t = 1 indicates that σt = σlσm should be used

in the process model, where σm > 1 is the ratio of high-volatility to low-volatility. Thus, there are

four possible values for the hidden state, shown in Table 1.

The state is probabilistically determined in the state-particle filter described in the next

section of this chapter. At a given time step, the value of the hidden Markov chain determines which

of the two regime-process models from the previous section should be used, as well as which of two

possible values should be used as σt in those equations. A long-form equation for the whole model

would be:

xt = (β1xt−1 − (1− β1)αt) (st − 1) + β2xt−1st + σl (σm)σ̂t εt (7)

This notation gives the appropriate process model for each of the four possible hidden states.

Although this is a satisfactory equation, the model is much easier to handle as two separate processes

with two possible volatility values. In the program and throughout this paper, the model is treated

in the easier-to-handle fashion, rather than using Equation 7.

It is important to remember that the main goal of the model in this thesis is to determine

when the asset is in a bubble, and so the most important output of the entire thing is the probability

that st = 1.

Before We Continue

The algorithm used in this paper consists of two nested particle-filtering algorithms. It is

presented “inside-out”; that is, the first particle filter, referred to as the state-particle filter, depends

on the set of parameters, θ, and is used to determine the probability that the time series is in any one

of the four possible states presented in Table 1; the second particle filter, referred to as the θ-particle
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Normal Regime, High Volatility Bubble Regime, High Volatility

(st, σ̂t) = (0, 1) (st, σ̂t) = (1, 1)

xt = (1− β1)αt + β1xt−1 + σlσmεt xt = β2xt−1 + σlσmεt

Normal Regime, Low Volatility Bubble Regime, Low Volatility

(st, σ̂t) = (0, 0) (st, σ̂t) = (1, 0)

xt = (1− β1)αt + β1xt−1 + σlεt xt = β2xt−1 + σlεt

Table 1: Table of States

filter, uses auxiliary variables created by the state-particle filter as probabilistic observations and is

used to draw a sample from the joint distribution of parameters. This is explained in detail in the

following sections, but was worth explaining here as it can seem confusing at first.

Parameters

The parameters, which are elements in the vector θ, decide the behavior of the state-particle

filter and thus directly affect the determined probability of each state. There are eight parameters

necessary for the algorithm.

• pn - The length of a normal regime is determined by a geometric distribution; each time step is

independent, which is reasonable if the time steps are sufficiently far apart in real-time, and at

any given timestep the probability of changing from a normal regime to a bubble regime is

given by the parameter pnormal.

• pb - Similarly, the length of a bubble regime is described by a geometric distribution; each time

step is again assumed to be independent, and the probability of returning from a bubble regime

to a normal regime at any given timestep is the parameter pbubble.

The use of geometric distributions to time regime changes allows sufficient flexibility for

unexpectedly fast switches and for unexpectedly long-lasting regimes. For a large sample size,

meaning a time series with many regime switches, the geometric distributions will approximate the

exponential distributions used by Fulop and Yu (2017). However, geometric distributions more closely

align with the discrete nature of the time series and are, in the author’s opinion, the more intuitive
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distribution. The probability of switching from a normal regime to a bubble regime has the Markov

transition matrix:

Ps =

1− pn pn

pb 1− pb


• σl - As previously stated, the model assumes that the analyzed time series falls into either

a low-volatility regime or a high-volatility regime. The value of σl is used as the standard

deviation of the random term at the end of each process equation during low-volatility regimes.

• σm - This parameter is the ratio of the high-volatility standard deviation to the low-volatility

standard deviation. That is; if the standard deviation of the random term is σl in the low-

volatility periods, then the standard deviation during the high-volatility periods is given by

σlσm.

• pl - The length of a low-volatility regime is proposed to follow a geometric distribution. At

any timestep, during a low-volatility regime, the probability of switching to a high-volatility

regime (without changing from normal to bubble or vice verse) is plow. This is an appropriate

proposal for the same reasons given for pnormal.

• ph - For the same reasons and by the same arguments, the length of a high-volatility regime is

said to follow a geometric distribution, and the probability of switching from high-volatility to

low-volatility is phigh. This gives the volatility-regimes the transition matrix:

Pσ =

1− pl pl

ph 1− ph


Switches from low-volatility to high-volatility regimes are independent of switches from

normal regimes to bubbles regimes. This allows a switch from a high-volatility normal regime to a

low-volatility normal regime, or from a low-volatility bubble regime to a low-volatility normal regime,

to occur according to this transition matrix.

Ps,σ =



(1− pn)(1− pl) (1− pn)pl pn(1− pl) pnpl

(1− pn)ph (1− pn)(1− ph) pnph pn(1− ph)

pb(1− pl) pbpl (1− pb)(1− pl) (1− pb)pl

pbph pb(1− ph) (1− pb)ph (1− pb)(1− ph)





(st, σt) = (0, 0)

(0, 1)

(1, 0)

(1, 1)


23



• β1 - The mean-reverting process corresponding to st = 0 has an auto-regressive term and

a moving-average term, making it an ARMA(1) process. The estimated coefficient for this

auto-regressive term is β1. If this coefficient is greater than one, the autoregressive term would

overwhelm the mean-reverting term (1− β1)α, and so it must be limited to β1 ≤ 1.

• β2 - The explosive process corresponding to st = 1 only has an auto-regressive term and

a random term, making it an AR(1) process. To make it a properly explosive regime, the

coefficient for this auto-regressive term must be limited to β2 > 1.

In summary, the parameters necessary for the state-particle filter are the two auto-regressive

coefficents β1 and β2, the four switching-probabilities pn, pb, pl, and ph, the standard deviation of

the random term, σl, and the ratio of low-volatility to high-volatility, σm. Thus, the vector θ is:

θ = [pn, pb, σl, σm, pl, ph, β1, β2]

Auxiliary Variables

The parameter-learning algorithm, the θ-particle filter, uses auxiliary variables to find the

posterior probability of the parameter vector θ. There are two auxiliary variables that are created by

the state-particle filter:

• ht - This variable is the time since the last normal-to-bubble or bubble-to-normal switch. Its

creation is described in detail in the next section. ht can be used to find the probabilities

P (pl|ht) and P (pb|ht), depending on the regime at time t. How this auxiliary variable is used

in the θ-particle filter is described later.

• ut - This variable is similar to ht; it measures the number of timesteps since the last high-to-low

volatility or low-to-high volatility switch. It can be used to find P (pl|ut) and P (ph|ut), and its

use by the θ-particle filter is described in detail in a later section.

State-Particle Filter

As explained earlier in this chapter, the time series being analyzed can be in one of four

possible states. The small number of states makes this a perfect candidate for the Discrete Particle
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Filter designed by Fearnhead (1998). This method is considered “optimal” because it explores every

possible state rather than a random sample of states, with the unlikely states being filtered out during

the resampling step. In the following explanation of the inner mathematics of the filter, dependence

on the parameter vector θ is suppressed to ease notation. Every step in the state-particle filter is

dependent on θ.

Suppose at time t there are N equally-weighted particles (sit, σ̂it, hit, uit, wit), i = 1, 2, ..., N ,

in which wit is the weight of the particle and all other elements are as previously defined. The goal of

the particle filter is to track f(st, σ̂t|x1:t), dependent on θ, and the filter can be moved forward one

timestep with the following recursion:

Branching Out

At time t+ 1, there are four potential states, shown in Table 1. The Discrete Particle Filter

branches out into each possible state. Thus, four new particles must be created for each existing

particle, one with each combination of st+1 and σ̂t+1. These particles are

(si,jt+1 = k, σ̂i,jt+1 = l, hi,jt+1, u
i,j
t+1, w

i
t), j = {1, 2, 3, 4}, k = {0, 1}, l = {0, 1}

. The particle weight is not yet updated. The auxiliary variables are updated thusly:

• hi,jt+1 - For each new branch-particle, if si,jt+1 = sit, then h
i,j
t+1 = hit + 1, while if si,jt+1 6= sit, then

hi,jt+1 = 0.

• ui,jt+1 - For each new branch-particle, if σ̂i,jt+1 = σ̂it, then u
i,j
t+1 = uit + 1. Otherwise, if σ̂i,jt+1 6= σ̂it,

then ui,jt+1 = 0.

To update the weights, let the function f(st+1, σ̂t+1 | st, σ̂t) give the probability of the new

state (si,jt+1, σ̂
i,j
t+1) given the previous state (sit, σ̂it). It is obvious that f(ht+1, ut+1 | ht, st, ut, σ̂t) is

equivalent to the state-probability function in the previous sentence. The values of this probability

function follow the total state transition matrix.

Then, the new weights become:

wi,jt+1|t = f(si,jt+1, σ̂
i,j
t+1 | sit, σ̂it)wit (8)

This is the new prior distribution, and does not take the new observation xt+1 into account.
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Using the probability function for the new observation, f(xt+1 | st+1, σ̂t+1), the posterior probability

has the relationship

f(st+1, σ̂t+1 | x1:t+1) ∝ f(xt+1 | st+1, σ̂t+1)f(st+1, σ̂t+1, st, σ̂t | x1:t)

This relationship can be exploited by assigning each particle the unnormalized weight

ŵi,jt+1 = f(xt+1 | si,jt+1, σ̂
i,j
t+1)wi,jt+1|t (9)

At this point, the marginal likelihood of xt+1 can be approximated by

p̂(xt+1 | x1:t) = 1
4N

N∑
i=1

4∑
j=1

ŵi,jt+1 (10)

This likelihood must be saved at each time step, as it is used by the θ-particle filter when

the Particle Marginal Metropolis-Hastings update must be performed. In practice, the marginal

likelihood becomes quite close to zero and so the loglikelihood is used.

Resampling

The Branching Out step created a total of 4N particles, and if it were repeated the number

of particles would grow exponentially and quickly become computationally unmanageable. The

particles will now be resampled down to the original sample size, N . Before resampling, the weights

need to be normalized. The normalized weights are:

wi,jt+1 =
ŵi,jt+1

N∑
i=1

4∑
j=1

ŵi,jt+1

(11)

Once N particles have been resampled accoring to the normalized weights, these re-

sampled particles are reset to equal weights wit+1 = 1
N . The particles at time t + 1 consist of

(sit+1, σ̂
i
t+1, h

i
t+1, u

i
t+1, wt+1t

i), i = 1, 2, ..., N , and the state-particle filter is ready to continue to

the next timestep.

The probability of being in any state at time t is approximated by

P (st = k, σ̂t = l) ≈ p̂ (st = k, σ̂t = l) = 1
N

N∑
i=1

1st=k, σ̂t=l (12)
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In this, 1st=k, σ̂t=l is defined as a function that is 1 when st = k and σ̂t = l, and 0 elsewhere.

Pseudocode for the state-particle filter is in Algorithm 1 and Figure 1 shows the movement of

state-particles between quadrants over time.

Algorithm 1 State-Particle Filter
1: Initialize the Filter {Initialization can be treated separately}

2: for t = 0 do

3: Set the distribution P (s0, σ̂0) arbitrarily

4: Sample N particles from P (s0, σ̂0). Call these particles Pi0

5: Set hi0 = 0 and ui0 = 0 in each particle

6: Set all weights wi0 = 1

7: Set the likelihood p̂(x0) = 1

8: end for

9: for t ≥ 1 do

10: Create all possible successor particles Pi,jt , including elements hi,jt and ui,jt

11: Calculate new weights wi,jt|t−1 = f(si,jt , σ̂
i,j
t | sit−1, σ̂

i
t−1)wit−1

12: Attach new information and calculate the unnormalized weights ŵi,jt = f(xt | si,jt , σ̂
i,j
t )wi,jt|t−1

13: Store the likelihood p̂(xt | x1:t−1) = 1
4N

N∑
i=1

4∑
j=1

ŵi,jt

14: Normalize the weights wi,jt = ŵi,j
t

N∑
i=1

4∑
j=1

ŵi,j
t

15: Resample N particles according to the normalized weights

16: Store the probability of a bubble state p̂(st = 1 | x1:t) = 1
N

N∑
i=1

1si
t=1

17: end for
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Figure 1: Position of State-Particles at time 1 and time 160

θ-Particle Filter

Each step of the state-particle filter is dependent on the parameter-vector θ, which in

practice is not known. How could the probability of switching from a normal regime to a bubble

regime be found if pn is unknown? To conquer this problem, this model uses a secondary particle

filter whose purpose is to learn θ. Unlike other possible answers to the problem, such as using

Maximum-Likelihood Estimates, this nested-particle filter approach allows the entire analysis to be

done sequentially. In this model, the parameters need only be subjected to weak assumptions.

The Marginalized-Resample-Move algorithm simulataneously published by Fulop and Li

(2013) and Chopin et al. (2013), also known as SMC2, is a relatively efficient method of sequential

parameter learning. Chopin et al. (2013) gives the more rigorous justification of the technique.
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In it, the auxiliary variables ht and ut, which are created by the state-particle filter, are used to

track the posterior probability of the fixed parameters, P (θ|x1:t). Because θ is made of continuous

variables that would be difficult if not impossible to discretize, tracking this posterior requires the

use of Sampling-Importance Resampling (SIR). Let π refer to the instrumental probability density.

Then, at each time t, there are M θ-particles (πmt , θmt ), m = 1, 2, ..., M , in which πmt represents

the normalized importance weight. In the nested particle filter, each θ-particle has N state-particles

attached that form a sample drawn from f(st, σ̂t | x1:t, θ
m
t ). The values of interest gained by the

sample of state-particles are the marginal likelihood p̂(xt | x1:t−1, θ
m) and the auxiliary variables ht

and ut, the length of the present process and volatility regimes.

Let δi,mt be the auxiliary variables ht and ut in the ith state-particle of the mth θ-particle.

The density of these random variables δi,mt is

ψ(δi,m1:t | x1:t, θ
m) =

t∏
l=1

ψ(δi,ml | δi,ml−1, xl, θ
m) (13)

Within each θ-particle, this density is approximated by ψ̂(δt | x1:t) = 1
N

N∑
i=1

1δi,m
t = δt

.

The target distribution of this parameter-learning algorithm is

γt(θ) = p(θ | x1:t) ∝ p(x1:t | θ)p(θ) =
t∏
l=1

p(xl | x1:l−1, θ)p(θ) (14)

Define:

p̂(xt | x1:t−1, θ) ≡ p̂(xt | δt, δt−1, θ) (15)

From this prior, the following posterior can be found:

p(θ, δ1:t | x1:t) ∝ p(θ)
t∏
l=1

p̂(xl | δl, δl−1, θ)ψ(δl | δl−1, xl, θ)p̂(x1 | δ1, θ)ψ(δ1 | x1, θ) (16)

In Equation 16, the components at time 1 are separated so that they can be treated according to

a different starting distribution, or perhaps set to specific values as may be appropriate in some

circumstances. An approximation for the target distribution in Equation 14, used in the model, is

γ̂(θ, δ1:t) ∝
t∏
l=1

p̂(xl | x1:t−1, δ1:l−1, θ)ψ̂(δl | x1:l, δ1:l−1)p(θ) (17)

This uses the approximate likelihood from the state-particle filter, as well as the approximate density

of the auxiliary variables. Both of these approximations are unbiased (Del Moral, 2004), and so the

29



target p(θ | x1:t) is the marginal distribution of the density in Equation 16, and the two distributions

have the same normalizing constant (Fulop & Li, 2013).

The θ-particle filter uses a combination of SIR methods and the mathematics explained

above to approximate a sample from the intractable distribution of θ. First, M θ-particles must be

sampled from the prior distribution θm0 ∼ p(θ), and each of them should have identical importance

weight πm0 = 1
M . This creates a cloud of particles (πm0 , θm0 ) that is distributed according to p(θ).

To each of these M θ-particles, attach N state-particles created according to the previous section.

Now, assume the particle filter has moved forward to time t. There are now M θ-particles

(πmt , θmt ) that represent p(θ |x1:t). To include the next observation, the θ-particles are moved forward

such that θmt+1 = θmt . The weights are then updated according to

π̂mt+1 = πmt × p̂(xt+1 | x1:t, δ
m
1:t+1, θ

m
t+1) (18)

The normalized weights for time t + 1 are then πmt+1 = π̂m
t+1∑M

i=1
π̂i

t+1
, and the new θ-particles are

(πmt+1, θ
m
t+1).

This reweighting leaves those less-likely values of θ with small probabilities and the more-

likely values with higher probabilities. Thus, if the reweighting is repeated, the weight for unlikely

values will approach zero, effectively removing those values from the sample. The Effective Sample

Size (ESS) is tracked by

ESSθ,t =

(
M∑
m=1

πmt

)2

M∑
m=1

(πmt )2
(19)

as per Chopin et al (2013). When the ESS drops below a chosen value B, which by rule of thumb is

often set B = M
2 (Fulop & Li, 2013), the sample must be rejuvenated by the Resampling and Move

steps of the algorithm.

Resample: When ESSθ,t < B, the θ-particles are resampled with replacement according

to their normalized weights πmt , and the weights are then set to πmt = 1
M . For each resampled θ,

the marginal likelihoods and the state-particles must be attached. The resampled cloud of particles

now has ESSθ,t = M , and is still distributed according to γ̂(θ, δ1:t).

Move: This is the most computationally expensive part of the entire algorithm. To move
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the θ-particles, a Particle Marginal Metropolis-Hastings (PMMH) update, from Andrieu et al (2010),

is performed on each. M new proposed θ∗’s are drawn from a proposal distribution, in this case

chosen to be a Multivariate normal with (µ, Σ) chosen to be the weighted average and weighted

covariance of the resampled θ-particles at time t. Then, the algorithm is repeated for times 1 : t,

after which there are M pairs of θ-particles and θ∗-particles to be compared.

• Let the acceptance probability be

α = min
(

1, p̂ (x1:t, δ
∗
1:t | θ∗)ht(θm | θ∗)

p̂ (x1:t, δm1:t | θm)ht (θ∗ | θm)

)

• With probability α, replace θm and attached particles with θ∗. With probability (1− α), keep

the original values.

The final probability of being in any of the four possible regimes from the state-particle

filter depends on θ, and is found by

E (1st=k,σ̂t=l | x1:t) = E [E(1st=k,σ̂t=l | x1:t, θ) | x1:t] ≈
M∑
m=1

πmt
1
N

N∑
n=1

1st=k,σ̂=l (20)

That is: The probability of being in a regime, taking θ into account, is the probability of being in

that regime in each state-particle filter with given parameters times the weight of those parameters

created by the θ-particle filter. Take the probability of being in a bubble state from step 16 of the

state-particle algorithm and multiply it by the weight of the attached θ-particle, then sum that over

all θm.

As the time series gets longer, the move step becomes increasingly computationally expensive.

However, as the θ-particle filter gets closer to representing the true distribution γ(θ) these resample-

move updates are needed less often. More detail on this is given in the discussion of the model’s

success on simulated data in Chapter 4, Results.

The pseduocode for this algorithm is in Algorithm 2.
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Algorithm 2 θ-Particle Filter
1: Initialize the Filter {Initialization can be treated separately}

2: for t = 0 do

3: Select starting elements for M θ-particles by some convenient distribution

4: Set θ-particle weights πm0 = 1

5: For each θ-particle, initialize an attached state-particle filter

6: end for

7: for t ≥ 1 do

8: Move the state-particle filter forward from t− 1 to t

9: Calculate the marginal likelihood p̂(x1:t | x1:t−1, δ
m
1:t, θ

m)

10: Reweight θ-particles according to π̂mt = πmt−1 × p̂(x1:t | x1:t−1, δ
m
1:t, θ

m)

11: Normalize the weights π̂mt from the previous step, and set the normalized weights as πmt

12: Find ESSθ,t =

(
M∑

m=1

πm
t

)2

M∑
m=1

(πm
t )2

13: if ESSθ,t < B then

14: Resample θ-particles according to normalized weights πmt

15: Calculate the weighted mean vector and covariance matrix (µ, Σ)

16: Draw M new θ∗-particles from a multivariate normal distribution (µ, Σ)

17: Run the state-particle and θ-particle filters from time t = 1 to time t

18: Find the acceptance probability α = min
(

1, p̂(x1:t, δ
∗
1:t, | θ

∗)×ht(θm | θ∗)
p̂(x1:t, δm

1:t | θm)×ht(θ∗ | θm)

)
{The multivariate

normal distribution is symmetric, and so the ht terms can be canceled out in this case,

leaving only the marginal likelihoods}

19: Draw a random number, U , from a Uniform distribution [0, 1]

20: if U < α then

21: Replace θm with θ∗

22: else

23: Keep θm

24: end if

25: end if
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Nested Particle Filter

Now that the two particle filters have been explained individually, this section will focus

on how they fit together and will end with the algorithm in its entirety. It is important to realize

that the state-particle filter occurs entirely within the θ-particle filter; the parameters used in the

state-particle filter come from the θ-particle filter.

There are M θ-particles, and each one of those has N state-particles attached. Each total

particle, a state-particle attached to a θ-particle, is herein refered to as a θ-state. There are a total

of MN θ-states. It is recommended by Chopin et al (2013) that M be at least the minimum of the

number of timesteps to be filtered or 1,000; however, both Fulop and Li (2013) and Svennson and

Schon (2016) show that the algorithm can return an accurate posterior distribution even with 100 or

fewer θ-particles. Neither of the time series analyzed in this paper has more than 1,000 timesteps; M

is set at 500, and the largest viable N was 40 for a total of 20, 000 θ-states. More particles is better,

and the small number of particles is one of the limitations described in Chapter 5.

After several successive resamples of the θ-particles, the elements covariance matrix may

approach zero, and so the covariance scaling factor c was introduced. In the final model, the

multivariate distribution from which new θ-particles are drawn is defined by (µ, cΣ). The PMMH

acceptance rate is tracked as well: When too many θ∗ are accepted (50% <), the new and old

particles are too close together and c is multiplied by 1.05; when too few are accepted (< 15%),

the proposal distribution is too wide and c is reduced to 0.95c, with a minimum value of 0.05. The

covariance matrix is not allowed to be zero. The sample of θ-particles can never fully degenerate.

Pseudocode for the complete nested particle filter is given by Algorithms 3-5 at the end of

this chapter. A flowchart explaining how the information moves through the algorithm is presented

in Figure 2.

Bubble-Stamping Loss Function

The raw partile-filter-based probability of being a bubble regime may be a poor bubble-

stamping indicator. The event of interest is not necessarily the bubble itself, but the switch between
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Figure 2: Nested Algorithm Flowchart

regimes. During the life of a bubble, the probability of being in a bubble still fluctuates. Thus, a

loss function is introduced to improve the bubble-stamping procedure. This loss function is closely

related to that of Fulop and Yu (2017).

Say that any misspecification of the regime results in some abstract loss. Let the loss from

erroneously stamping a bubble regime be lbt , and the loss from erroneously stamping a normal regime

is lnt . Let rt be 1 when the timestep is stamped as a bubble and 0 otherwise. Thus, the total loss

from misspecifying the regime at any timestep is

Lt(st, rt) = lbtrt1st=0 + lnt (1− rt)1st=1

Note how the loss variables are multiplied by the number of particles in the opposite regime.

For the two possible values of rt, the expected loss is easy to find.

E [Lt(st, rt = 1)] = lbtP (1st=0 | x1:t)

E [Lt(st, rt = 0)] = lnt Pr(1st=1 | x1:t)

The expected loss is minimized by stamping the start of a bubble when lbtP (1st=0|x1:t) <

lnt P (1st=1|x1:t), and the expected loss is minimized by stamping the start of a normal regime when
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ltnP (1st=1|x1:t) < lbtP (1st=0|x1:t). With some algebraic manipulation, it is optimal to stamp the start

of a bubble when

lbt
lnt

<
P (1st=1|x1:t)
P (1st=0|x1:t)

and it is optimal to stamp the beginning of a normal regime when

lbt
lnt

<
P (1st=0|x1:t)
P (1st=1|x1:t)

Since the losses are subjective, the left-hand ratio can be set by the user; ζ = lbt
lnt
, with higher ζ

indicating stronger persistence of regimes.

At any given time, the time series is either in a bubble regime or a normal regime; there

are no other options. Thus, P (1st=1|x1:t) + P (1st=0|x1:t) = 1. Using this, the following algebra is

possible.

ζ <
P (1st=1 | x1:t)

1− P (1st=1 | x1:t)

(1− P (1st=1 | x1:t))ζ < P (1st=1 | x1:t)

ζ − ζP (1st=1 | x1:t) < P (1st=1 | x1:t)

ζ < P (1st=1 | x1:t) + ζP (1st=1 | x1:t)

ζ < P (1st=1 | x1:t)(1 + ζ)

ζ

1 + ζ
< P (1st=1 | x1:t)

The final effect of the loss function is: stamp the beginning of a bubble when the probability

of being in a bubble crosses ζ
1+ζ , and stamp the end of that bubble when the probability cross back

underneath 1
1+ζ .

Simulated Data

When real data is used, the values of parameters cannot be truly known and any declaration

as to the state of the time series is necessarily biased by subjective judgement. Thus, the proper way

to evaluate the accuracy of the proposed model is with simulated data. The time series on which

this model is tested was created to match the assumptions of the model:
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• The time series follows either the mean-reverting or explosive process

• Volatility is either high or low

• The switches are independent and distributed according to geometric distributions.

First, the parameters are set:

θ =



pn

pb

σl

σm

pl

ph

β1

β2



≡



1/150

1/50

20

2

1/100

1/30

0.98

1.02


Then, with x0 = 100, the time series followed a random walk xt = xt−1 + εt, where

εt ∼ N(0, σ2
l ) for 120 time steps; this was necessary because the model uses a 120-period moving

average for the mean-reverting regime. If a different moving-average window is discerned to be more

effective, that number of periods will be required before the particle filter can be implemented.

Then, a total of 10 switches were drawn from the geometric distributions for regime and

volatility; 6 from the regime distribution and 4 from the volatility distribution. The switches were

drawn until the time series had at least two occurences of each regime, and to make it sufficiently

long for testing the computational complexity of the algorithm. The final length of the test data is

627 periods, with 507 usable for testing the particle filter.

Between switches, the time series was made to follow the proper regime process with the

proper volatility. This is all shown in Table 2; wherein

1

2

3

4


=



(st, σ̂t) = (0, 0)

(0, 1)

(1, 0)

(1, 1)


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Section Time State Process Function

1 [121, 138] 1 xt = (1− β1)αt + β1xt−1 + σlεt

2 [139, 149] 3 xt = β2xt−1 + σlεt

3 [150, 188] 4 xt = β2xt−1 + σlσmεt

4 [189, 209] 3 xt = β2xt−1 + σlεt

5 [210, 353] 1 xt = (1− β1)αt + β1xt−1 + σlεt

6 [354, 405] 2 xt = (1− β1)αt + β1xt−1 + σlσmεt

7 [406, 423] 1 xt = (1− β1)αt + β1xt−1 + σlεt

8 [424, 456] 3 xt = β2xt−1 + σlεt

9 [457, 486] 1 xt = (1− β1)αt + β1xt−1 + σlεt

10 [487, 567] 3 xt = β2xt−1 + σlεt

11 [568, 627] 1 xt = (1− β1)αt + β1xt−1 + σlεt

Table 2: Simulated Data States

A plot showing the simulated time series is in Figure 3.

Figure 3: Simulated Data Series

37



Algorithm 3 Nested Particle Filter: Part 1
1: Initialize both filters {Initialization can be treated separately}

2: for t = 0 do

3: Select starting elements for M θ-particles by any convenient distribution

4: Set θ-particle weights πm0 = 1

5: for Each θ-particle do

6: Set the distribution P (s0, σ̂0) arbitrarily {Initialize an attached state-particle filter}

7: Sample N particles from P (s0, σ̂0). Call these particles Pi0

8: Set hi0 = 0 and ui0 = 0 in each particle

9: Set all weights wi0 = 1

10: Set the likelihood p̂(x0) = 1

11: end for

12: Call each combined θ-particle and state-particle a θ-state

13: end for
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Algorithm 4 Nested Particle Filter: Part 2
1: for t ≥ 1 do

2: for Each θ-state do

3: Create all possible successor particles Pi,jt , including elements hi,jt and ui,jt

4: Calculate new weights wi,jt|t−1 = f(si,jt , σ̂
i,j
t | sit−1, σ̂

i
t−1)wit−1

5: Attach new information and calculate the unnormalized weights ŵi,jt = f(xt |si,jt , σ̂
i,j
t )wi,jt|t−1

6: Store the likelihood p̂(xt | x1:t−1) = 1
4N

N∑
i=1

4∑
j=1

wi,jt

7: Normalize the weights wi,jt = ŵi,j
t

N∑
i=1

4∑
j=1

ŵi,j
t

8: end for

9: for Each θ-particle, which includes N state-particles do

10: Resample N particles according to the normalized weights

11: Calculate the marginal likelihood p̂(x1:t | x1:t−1, δ
m
1:t, θ

m)

12: Store the probability of a bubble state p̂(st = 1 | x1:t) = 1
N

N∑
i=1

1si
t=1

13: end for

14: Reweight θ-particles according to π̂mt = πmt−1 × p̂(x1:t | x1:t−1, δ
m
1:t, θ

m)

15: Normalize the weights π̂mt from the previous step, and set the normalized weights as πmt

16: Find ESSθ,t =

(
M∑

m=1

πm
t

)2

M∑
m=1

(πm
t )2

17: end for
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Algorithm 5 Nested Particle Filter: Part 3
1: for t ≥ 1, continued do

2: if ESSθ,t < B then

3: Resample θ-particles according to normalized weights πmt

4: Calculate the weighted mean vector and covariance matrix (µ, Σ)

5: Draw M new θ∗-particles from a multivariate normal distribution (µ, Σ)

6: Run the state-particle and θ-particle filters from time t = 1 to time t

7: Find the acceptance probability α = min
(

1, p̂(x1:t, δ
∗
1:t, | θ

∗)×ht(θm | θ∗)
p̂(x1:t, δm

1:t | θm)×ht(θ∗ | θm)

)
{The multivariate

normal distribution is symmetric, and so the ht terms can be canceled out in this case,

leaving only the marginal likelihoods}

8: Draw a random number, U , from a Uniform distribution [0, 1]

9: if U < α then

10: Replace θm with θ∗

11: else

12: Keep θm

13: end if

14: end if

15: Calculate the final probability of a bubble state p̂(st = 1) =
M∑
m=1

πmt
1
N

N∑
n=1

1st=1

16: end for
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Data

All of the data necessary for this analysis was available from the Federal Reserve Bank of

St. Louis’s economic database, FRED. The data is available free of charge and can be downloaded in

.csv format. Monthly data is used in this analysis for three reasons: 1) most of the necessary data is

measured monthly but not daily; 2) monthly data exhibits much less noise than higher-frequency

data; 3) there are 546 months from June 1974 to December 2019, and the program becomes quite

computationally expensive after around 600 timesteps.

Following the example of Wu (1995), the measure of money supply used in this thesis is M1.

“M1 includes funds that are readily accessible for spending” (FRED, 2020a). This includes money

that is outside of the U.S. Treasury or the vaults of depository institutions (i.e. consumer banks). It

also includes demand deposits, traveler’s checks, and other checkable deposits. Currency and the

other included items are seasonally adjusted separately and then summed (FRED, 2020a). The M1

data on FRED is updated every month, and runs about one month behind. It is not available in

real time, and investors could not use today’s M1 to make investment decisions. Thus, this time

series is lagged by two months; investors use January’s measurement to make decisions about March,

September’s data to make decisions about October, and so on.

Again following Wu (1995), the total industrial production index (TPI) was used as a proxy

for real income. This time series “measures the real output of all relevant establishments located in

the United States, regardless of their ownership” (FRED, 2020b). It is not seasonally adjusted. Like

M1, the data is updated monthly, and runs a little more than one month behind. Thus, the model in

this thesis will assume that investor’s use two-month old data in their analysis.

The “most broadly available and frequently used index to represent the price level of traded

goods” (Berrendorf & Chen, 2013) is the Producer Price Index (PPI), and so that is used in this

paper to represent the price index. It is better to use the price level for traded goods rather than

non-traded goods, as Bettendorf and Chen (2013) showed that the price level of traded goods seems

to better coincide with the behavior of the exchange rate. The PPI for Japan in the Federal Reserve

Economic Database is a monthly time series, but is updated slightly more than two months late.
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Therefore, investors will use January’s data in their analysis for April and May’s data for their

analysis in July, etc.

The interest rate for the country of Japan, i∗(t) in the fundamental value equation, is

the Immediate Rate from the Central Bank of Japan. This time series is monthly, and is updated

just over one month late. Thus, like with M1 and TPI, the time series will be lagged two months;

investors will use January’s interest rate in their analysis for March, and so on. Up-to-date interest

rates are available from many websites, and the Immediate Rate is not typically the interest rate

used by traders, but it is used here because it is the only interest rate avaiable for free on a monthly

basis going back to 1974. Other interest rate series only go back as far as 1986.

The JPY/USD exchange rate is also gathered from FRED due to the trustability of the

historical data. In that database, this series is updated monthly and runs more than one month

behind, but investors will surely have access to up-to-date pricing, in real time, and so the exchange

rate is not lagged.

Calculation of the interest-rate semi-elasticity is performed by linear regression. Using the

normal, non-logarithmic values, a simple take on the relationship between interest rates and money

demanded is

M = eki

or, after applying the natural logarithm,

ln(M) = ki

where ln(M) was refered to above by the lower-case m. Thus, the value k for the fundamental-price

model can be found by a simple linear regression with i as the input variable and m as the response.

Once the data was all downloaded in .csv format, it was loaded into R Studio for analysis.

The natural logarithm was taken for M1, Japan’s PPI, USD/JPY, and U.S. TPI, but not for the

Japanese interest rate. The coefficient k was calculated by the regression explained above, and

a = k
k+1 . The fundamental value z(t) is simply a linear combination of these variables, and this was

subtracted from the natural log of the JPY/USD rate, thereby removing the fundamental value and

leaving only the bubble component.
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The exchange rate was returned to standard form by exponentiation. Then, the reciprocal

of the exchange rate was taken, so that the entry and exit prices were listed in USD for more intuitive

trading analysis.
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IV. Results

Results from Simulated Data

The stamping of bubbles requires specification of ζ, which indicates the (subjective) belief

in the persistence of regimes. Thus, a desirable outcome of testing this algorithm on simulated data

is the determination of the optimal value of ζ; the one that produces the most accurate stamps. See

Figure 4. There is a tradeoff; up to a point, higher ζ fills in true bubbles better, but it also lengthens

erroneous bubbles. When ζ is too high, no erroneous bubbles are stamped but the first bubble, which

is very close to the beginning of the particle filter, is almost entirely missed. In a trading sense,

higher ζ is more risk averse and should result in fewer losing trades, but may have a negative effect

on the end equity due to too few trades being undertaken. This will be explored in the real data.

Effective Sample Size

The simulated data required PMMH updates 22 times, of which 19 occured before the 50th

timestep and 1 occured after the 100th. The ESS reached 251.65 at filter-timestep 358 (478 for the

whole data), but instead of dropping below 250 and triggering another update, it shot back up and

no update was required. The Effective Sample Size is in Figure 6.

Parameters

Histograms showing the distribution of parameters both before and after the particle filter

are in Figure 5. On the simulated data, the parameters were sampled down to a single value.
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Figure 4: True and Stamped Bubbles
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Figure 5: Histogram of prior (white) and posterior (black) distributions of parameters

The algorithm did not do especially well at estimating the expected length of regimes,

possibly because there were few true switches. The expected length of regimes was generally

underestimated. In Fulop and Yu (2017), the length of both process-regimes and volatility-regimes

was overestimated. In this thesis, the learned parameter was quite close to the coefficient of the

bubble process. The inaccuracy of the estimate of the ratio of high-to-low volatility regimes, σm,
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suffered from a poor choice of the prior distribution. This shows the importance of selecting a wide

prior. It is also unexpected that the θ-particles would be resampled down to a single value; the

only way this could happen is if the weight of this particle was so relatively high that it was favored

during repeated resampling steps, and then the new parameter-particles were all rejected during the

last PMMH update. This is highly unlikely, but the results show that it is possible. This may also

explain why the ESS behaved strangely; the single value of the parameters did not fit the area before

timestep 358 very well, and so the ESS was falling, but they fit timestep 358 quite well and so the

ESS suddenly sprang back up.

Figure 6: ESS on Simulated Data

Empirical Results

A set of plots of the bubble component of the exchange rate, showing stamped bubbles for

various values of ζ, is in Figure 7. Two high and two low values are considered along with ζ = 16,

due to its performance on the simulated data. Regardless of ζ, the algorithm finds bubbles in the

late 1980s, from around June 1985 through May 1989, then several short bubbles from 1999 to 2003,

followed by time of bubbles from March 2008 through October 20009, and finally between April
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2015 and July 2016. Other than those areas in which ζ agree that bubbles exist, there are many

small differences and short bubbles stamped by one value but not another. Most interesting is the

seeming disagreement about the early 1990s. Low ζ finds strong bubbles there, while with high ζ,

those bubble disappear.

Those same bubbles are stamped on the real exchange rate in Figure 8. Analyzing the

bubble component rather than the exchange rate itself made it possible to detect several bubbles

even while the exchange rate was below the long-term average.

Effective Sample Size

The effective sample size was not as stable in the real data as it was for the simulated data.

At first, it varied widely (19 PMMH updates were required in the first 100 timesteps), but once a

well-fit set of parameters was found, it declines slowly from timestep 94 to 288. After timestep 289,

falling on June 1st, 1998, the ESS became unstable again and required 10 more PMMH updates.

The effective sample size does not drop below 250 after timestep 340, September 1st, 2002. This plot

is in Figure 9.

Table 3: Posterior Mean and Standard Deviation of Parameters

pn pb σl σm pl pm β1 β2

Mean 134.61632 54.48070 8.30132 7.27419 174.21871 50.94670 0.96404 1.07997

St. Dev. 0.04667 0.03005 0.05769 0.08920 0.02802 0.06379 0.00046 0.01338

Parameters

The starting distributions of parameters was the same as in the simulated data. Unlike in

the simulated data, the θ-particles did not degenerate to a single point. The mean and standard

deviation of each parameter is shown in Table 3. The standard deviations are small, even though

the covariance-scaling constant, c, is 4.11. In each PMMH update, the algorithm accepted a high

proportion of proposed particles. This is a sign that the random-walk aspect of the Metropolis-

Hastings sampler was not wide enough; the algorithm may not have been ergodic. Histograms
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Figure 7: Stamped Bubbles in the Bubble Component of the Exchange Rate

showing the prior and posterior distirbutions of parameters are in Figure 10.

All of the parameters ended up inside the prior distribution;the width of the distirbutions

tightened until all samples fall into a single bin. The most extreme parameters, compared to their
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Figure 8: Stamped Bubbles in the Bubble Component of the Exchange Rate

priors, are σm and β2: σm moved toward the upper curve of the prior, and β2 moved to the lower

end of the prior.
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Figure 9: Effective Sample Size in analysis of the bubble component, over time
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Figure 10: Histograms of the Distribution of Parameters in the Real Data
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V. Trading Strategy

Four trading strategies are considered. First, the buy-and-hold strategy; the investors buys

Yen on June 1st, 1984, the first day the algorithm is active, and sells Yen on December 1st, 2019, the

day the analysis ends. The second is a directional strategy; when the exchange rate is higher than in

the previous month, the investor buys Yen, and the investor sells when it is lower. Third is a simple

bubble-trading strategy wherein the investor buys when the start of a bubble is stamped and sells

when the bubble is ended. The final strategy, the directional bubble strategy, combines strategies 2

and 3; the investor buys when the exchange rate goes up during a bubble, and sells either when the

exchange rate falls or when the bubble ends.

For the bubble-based strategies, the choice of ζ is important. All five values of ζ compared

in Figure 8 are tested. Each strategy starts with $1 in June, 1984. All strategies buy as much as

possible at each buy signal, then sell all of their holdings at each sell signal. Table 4 shows the end

equity, Sharpe Ratio, and Sortino Ratio of each strategy.

There was a happy accident; by typo, the author tested ζ = 999 in addition to the others.

The results for this are also in the Table 4. This very high value of ζ returned low equity, but with the

highest Sharpe ratio and by far the highest Sortino ratio of any tested strategy. Higher ζ indicates

more persistent regimes, a more conservative appraoch to bubble-stamping.
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Table 4: Trade Statistics for Each Strategy

Strategy End Equity Sharpe Ratio Sortino Ratio

Buy and Hold 2.1301

Direction 5.5486 0.2221 1.0615

Simple Bubble, ζ = 1 2.2789 0.2866 2.1923

Simple Bubble, ζ = 5 2.0471 0.2862 2.145

Simple Bubble, ζ = 16 1.7168 0.3216 1.8022

Simple Bubble, ζ = 60 1.5537 0.3219 1.2843

Simple Bubble, ζ = 99 1.7355 0.3229 1.7854

Simple Bubble, ζ = 999 1.3494 0.4247 1.3713

Directional Bubble, ζ = 1 1.7725 0.5643 2.9739

Directional Bubble, ζ = 5 1.5955 0.5908 2.9214

Directional Bubble, ζ = 16 1.5087 0.587 2.9557

Directional Bubble, ζ = 60 1.4353 0.5039 2.5702

Directional Bubble, ζ = 99 1.4522 0.5566 2.87

Directional Bubble, ζ = 999 1.4477 0.7057 4.1868

The simple directional strategy has by far the highest end equity, but it has low Sharpe

and Sortino ratios; this strategy faces more risk than the bubble strategies. The high ratios and low

end equity of the high-ζ directional-bubbles strategy comes because it has only 2 losing trades out

of 8; the win/loss ratio is 3:1. The average winning trade makes a 7.3% return, while the average

loser is only 2.2%. By comparison, the simple direcitonal strategy has a win/loss ratio of 24/31, 48

winners and 62 losers; the average winning trades has a 6.5% return, while the losing trades average

a 1.8% loss.

The equity in the directional strategy is in Figure 11. The equity passes the buy-and-hold

strategy in the mid 1980s, and doesn’t face a big drawdown until the mid 1990s. The strategy faces
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many drawdowns, for years at a time. Hence the low Sharpe ratio.

Figure 11: Equity Growth in the Simple Directional Strategy

The equity in the simple bubble strategies are in Figure 12; higher ζ generally has a negative

impact on the end equity, but also has comparatively shallow drawdowns. The only bubble strategy

that has higher final wealth than the buy-and-hold strategy is the Simple Bubble Strategy with

ζ = 1.

The equity in the directional bubble strategies are in Figure 13; as in the simple bubble

strategy, higher ζ has a negative effect on the end equity. In the directional strategy, the highest ζ

eliminated all drawdowns except for those at the very end, which are flattened.

Ideas to Improve the Strategies

The greatest flaw in the trading strategies analyzed here is that they only trade USD/JPY.

The inclusion of more exchange rates in the strategy will allow the investor to diversify their

portfolio and would reduce time spent outside the market. Including more exchange rates would

require the particle filter to be run on several time series at once, making the algorithm much more

computationally expensive. To run the filter on this one time series with 427 steps took several days;

backtesting a multi-asset strategy based on this algorithm would be time intensive. Since the data is

monthly, live-trading based on such a strategy should not be a problem.
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Figure 12: Equity plots for each of the Simple Bubble Strategies

The second flaw in the trading strategies is that they have relatively few trades; the highest

Sharpe-ratio strategy has only 8 trades over 45 years! To improve this, it might be reasonable to

apply the algorithm to higher-fequency data. Weekly data should be computationally feasible, and is
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Figure 13: Equity plots for each of the Directional Bubble Strategies

the frequency used in Milunovich et al (2019) for a similar bubble-trading strategy. Daily data may

also be feasible when there is no PMMH update. A PMMH update at t>300 took more than one

day on this data.
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A combination of the two improvements, weekly trading of several currencies, should make

this strategy more worthwhile to a retail trader, although it would be quick time-consuming to

backtest.

The best thing about the strategies tested is that the asset traded is among the most liquid

and the trading indicators are long-lived. The bubble-trading strategies should have high capacity;

increasing portfolio size should have little effect on the performance of the strategies.
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