

Abstract

The main objective of this project is to replace petroleum based raw materials with environmental-friendly, agricultural-based starting materials. Plant based starting materials obtained from soybean oil and orange peel were reacted with a Lewis acidic catalyst, tris(pentaflorophenyl)borane or BCF for synthesis of bio-based epoxy resins. Thermal and mechanical properties of thus prepared epoxy resins were analyzed.

Introduction

Many of the polyurethane cast resins available in the market are petroleum-based. In general, petroleum-based chemicals are reacted with toxic chemicals such as isocyanate to prepare cast resin. Our project focuses on creating isocyanate free, plant-based epoxy cast resins that are polymers containing epoxy or oxirane groups. Utilization of alternate resources; i.e., bio-based, agricultural products significantly minimizes health, safety and environmental hazards. Major application of these epoxy resins includes coatings, adhesives, electrical insulation, 3D printing, wind turbines, automobiles parts, etc.

Methods

•Synthesized by reacting epoxidized soybean oil (ESO) and oxide (LO) in presence of limonene the catalyst, tris(pentaflorophenyl)borane, BCF.

•Poured the reaction mixture in a mold and cured in an oven at 100 °C for about 12 hours

•Characterized by various instruments including Fourier Transform Infrared spectroscopy (FT-IR), Thermogravimetric analysis (TGA), Differential scanning calorimeter (DSC).

Chemical Structure of the catalyst, BCF

Epoxidized oil

Scheme 1: Synthesis of epoxy cast resins from derivatives of natural oils

Preparation of Bio-based Resins from Soybean Oil and Orange Peel

Tavia Spidel, Isaac Noble, Crystal Limer, and Maha L. Shrestha* West Texas A&M University Canyon, TX 79015

Results and Discussion

Figure 2: Epoxy cast resins prepared from Soybean oil and orange peel derived starting materials

Sample	Gelation time, mins	Thickness, mm	Hardness, Shore A	Temperature °C, @ 5% wt. loss	Temperature °C, T _g
ESO:LO (90:10)	13	2.258	84.6	380	-41.11
ESO:LO (80:20)	16	1.814	86.6	374	-44.72
ESO:LO (70:30)	29	1.714	77.6	355	-44.9
ESO:LO (60:40)	35	1.914	75.6	324	-40.33
ESO:LO (50:50)	35	1.770	69.6	301	-39.30

Table 1: Properties of epoxy cast resins prepared from soybean oil derived raw materials

- FTIR results show epoxy groups of the starting materials reacted.
- Thermogravimetric analysis (TGA) confirms the stability at very high temperature.
- Low glass transition temperature, Tg suggests the rubbery nature of the biobased cast resins.

Samples were clear and transparent. • Lowering the concentration of ESO or increasing the concentration of LO increases gelation time • Higher concentration of ESO provided harder samples

https://doi.org/10.1080/1023666X.2016.1110353 2075. DOI: 10.1007/s11746-012-2102-2 <u>9312(200205)104:53.0.CO;2-W</u>

- University

containing aromatic functional group/s

References

1. Biswas, A., Liu, Z., & Cheng, H. N. (2016). Polymerization of epoxidized triglycerides with fluorosulfonic acid. International Journal of Polymer Analysis & Characterization, 21(1), 85–93.

2. Dragaba R, Petrovic Z, Tanasic J, Ristic I. (2020). Silica-filled composites from epoxidized natural oils. Journal of Polymers and the Environment. DOI: 10.1007/s10924-020-01689-9

3. España JM, Sanchez-Nacher L, Boronat T, Fombuena V, Balart R. (2012). Properties of bio based epoxy resins from epoxidized soybean oil (ESBO) cured with maldición anhydride. J AM Oil Chem Soc 89:2067-

4. Ionescu, M. (2016). Chemistry And Technology Of Polyols For Polyurethanes, 2nd Edition, Volume. Smithers Rapra. Kubisa, P., & Penczek, S. (1999). Cationic activated monomer polymerization of heterocyclic monomers. Progress in Polymer Science, 24(10), 1409–1437. https://doi.org/10.1016/S0079-6700(99)00028-3

5. Petrović, Z. S., Zlatanić, A., Lava, C. C., & Sinadinović-Fišer, S. (2002). Epoxidation of soybean oil in toluene with peroxoacetic and peroxoformic acids - kinetics and side reactions. European Journal of Lipid Science and Technology, 104(12), 293–299. <u>https://doi.org/10.1002/1438-</u>

6. Radojčić D, Hong J, Ionescu M, Wan X, Javni I, Petrović ZS. (2016). Study on the reaction of amines with internal epoxides. Eur J Lipid Sci Technol 118:1507–1511. DOI: 10.1002/ejlt.201500490

Acknowledgements

•Killgore Faculty Research Grant, West Texas A&M University •McNair Scholar Program, West Texas A&M University •Department of Chemistry & Physics, West Texas A&M University •Kansas Polymer Research Center (KPRC), Pittsburg State